Department of Plant and Environmental Science, University of Copenhagen, Denmark.
Department of Environmental Science, Aarhus University, Roskilde, Denmark.
Nucleic Acids Res. 2020 Oct 9;48(18):10383-10396. doi: 10.1093/nar/gkaa735.
In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.
在与移动遗传元件(MGEs)不断进化的斗争中,细菌已经开发出几种防御机制,其中一些针对传入的外来核酸,例如限制修饰(R-M)或 CRISPR-Cas 系统。其中一些 MGEs,包括噬菌体,反过来又进化出了不同的策略来规避这些障碍。最近表明,噬体 CAjan 和其他 180 种病毒使用其 DNA 中的 7-脱氮鸟嘌呤修饰来逃避细菌的 R-M 系统。在其他方面,噬菌体 CAjan 基因组包含一个编码 tRNA-脱氮嘌呤修饰酶的 DNA 修饰同源物的基因,以及四个 7-氰基-7-脱氮鸟嘌呤合成基因。使用 CRISPR-Cas9 基因组编辑工具结合纳米孔测序(ONT),我们表明 CAjan 基因组中的 7-脱氮鸟嘌呤修饰依赖于噬菌体编码的基因。该修饰也是特异性的,主要存在于两个独立的 DNA 序列环境中:GA 和 GGC。修饰酶 DpdA 的同源建模提供了其可能的 DNA 结合表面和 DNA 识别的一般模式的见解。