Suppr超能文献

牺牲打印微流控通道嵌入式纸设备的扩展,用于体外构建体积组织模型。

Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro.

机构信息

Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, United States of America.

College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, People's Republic of China.

出版信息

Biofabrication. 2020 Sep 18;12(4):045027. doi: 10.1088/1758-5090/abb11e.

Abstract

We report a method for expanding microchannel-embedded paper devices using a precisely controlled gas-foaming technique for the generation of volumetric tissue models in vitro. We successfully fabricated hollow, perfusable microchannel patterns contained in a densely entangled network of bacterial cellulose nanofibrils using matrix-assisted sacrificial three-dimensional printing, and demonstrated the maintenance of their structural integrity after gas-foaming-enabled expansion in an aqueous solution of NaBH. The resulting expanded microchannel-embedded paper devices showed multilayered laminar structures with controllable thicknesses as a function of both NaBH concentration and expansion time. With expansion, the thickness and porosity of the bacterial cellulose network were significantly increased. As such, cellular infiltration was promoted comparing to as-prepared, non-expanded devices. This simple technique enables the generation of truly volumetric, cost-effective human-based tissue models, such as vascularized tumor models, for potential applications in preclinical drug screening and personalized therapeutic selection.

摘要

我们报告了一种使用精确控制的气体发泡技术扩展微通道嵌入式纸设备的方法,用于体外生成体积组织模型。我们成功地使用基质辅助牺牲三维打印制造了空心、可灌注的微通道图案,这些图案包含在细菌纤维素纳米纤维的密集缠结网络中,并证明了它们在 NaBH 的水溶液中进行气体发泡扩展后的结构完整性得以保持。所得的扩展微通道嵌入式纸设备显示出具有多层层状结构,其厚度可以通过 NaBH 浓度和扩展时间来控制。随着扩展,细菌纤维素网络的厚度和孔隙率显著增加。因此,与未经扩展的原始设备相比,细胞渗透得到了促进。这种简单的技术可以生成真正的体积、经济高效的基于人体的组织模型,例如血管化肿瘤模型,用于临床前药物筛选和个性化治疗选择的潜在应用。

相似文献

7
3D-printed microfluidic devices.3D 打印微流控器件。
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.
8
Rapid prototyping using 3D printing in bioanalytical research.在生物分析研究中使用3D打印进行快速成型
Bioanalysis. 2017 Feb;9(4):329-331. doi: 10.4155/bio-2016-0293. Epub 2017 Jan 10.

引用本文的文献

7
Vascularizing the brain .使大脑血管化。
iScience. 2022 Mar 17;25(4):104110. doi: 10.1016/j.isci.2022.104110. eCollection 2022 Apr 15.
9
Engineering (Bio)Materials through Shrinkage and Expansion.通过收缩和膨胀来设计(生物)材料。
Adv Healthc Mater. 2021 Jul;10(14):e2100380. doi: 10.1002/adhm.202100380. Epub 2021 Jun 16.

本文引用的文献

2
4
Multiscale reverse engineering of the human ocular surface.人体眼表面的多尺度反向工程。
Nat Med. 2019 Aug;25(8):1310-1318. doi: 10.1038/s41591-019-0531-2. Epub 2019 Aug 5.
6
Load-induced osteoarthritis on a chip.芯片上的负荷诱导性骨关节炎
Nat Biomed Eng. 2019 Jul;3(7):502-503. doi: 10.1038/s41551-019-0427-y.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验