Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America.
Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, United States of America.
PLoS One. 2020 Sep 18;15(9):e0239034. doi: 10.1371/journal.pone.0239034. eCollection 2020.
Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a 30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged at that temperature for 5, 15, or 30 min. A faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed MnO. Our results indicate that a 20°C/min ramp rate with an aging time of 30 min was the ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+ dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ production was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH 6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the ideal MnO NP formulation (32 nm) was compared with smaller MnO and Mn3O4 NPs. Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal compared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellularly to maximize MRI contrast.
氧化锰 (MnO) 纳米粒子 (NPs) 可以作为磁共振成像 (MRI) 的强大 pH 敏感对比剂,因为在低 pH 下会释放 Mn2+,这会导致 T1 弛豫率增加约 30 倍。控制 NP 尺寸、组成和 Mn2+ 溶解速率的策略对于提高 pH 响应性 MnO NPs 的诊断性能至关重要。我们是第一个证明 MnO NP 尺寸和组成可以通过在热分解二乙酰丙酮锰时使用的温度上升率和老化时间来调节的。应用了两种不同的温度上升率(10°C/min 和 20°C/min)以达到 300°C,然后将 NPs 在该温度下老化 5、15 或 30 min。较快的升温速率和较短的老化时间产生了约 23nm 的最小 NPs。较短的老化时间产生了 MnO 和 Mn3O4 NPs 的混合物,而较长的老化时间形成了 MnO。我们的结果表明,以 20°C/min 的升温速率和 30 min 的老化时间是形成最小纯 MnO NPs(约 32nm)的理想温度条件。然而,低 pH 下 Mn2+ 的溶解速率不受合成条件的影响。尽管在 pH 5 下模拟细胞内的内涵体时产生了高的 Mn2+,但在 pH 6.5 和 7.4 下释放的 Mn2+很少,分别模拟肿瘤细胞外空间和血液。为了进一步阐明 NP 组成和尺寸对 Mn2+释放和 MRI 对比的影响,将理想的 MnO NP 配方(~32nm)与较小的 MnO 和 Mn3O4 NPs 进行了比较。小的 MnO NPs 在酸性 pH 下产生了最高量的 Mn2+,具有最大的 T1 MRI 信号;Mn3O4 NPs 产生的 MRI 信号最低。包封在聚乳酸-共-羟基乙酸 (PLGA) 内的 MnO NPs 与 PLGA Mn3O4 NPs 相比,Mn2+释放和 MRI 信号显著更高。因此,为了最大限度地提高 MRI 对比度,MnO 而不是 Mn3O4 应该被靶向到细胞内。