Suppr超能文献

石墨烯拓扑粘性霍尔流体的光学N不变量。

Optical N-invariant of graphene's topological viscous Hall fluid.

作者信息

Van Mechelen Todd, Sun Wenbo, Jacob Zubin

机构信息

School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.

出版信息

Nat Commun. 2021 Aug 5;12(1):4729. doi: 10.1038/s41467-021-25097-2.

Abstract

Over the past three decades, graphene has become the prototypical platform for discovering topological phases of matter. Both the Chern [Formula: see text] and quantum spin Hall [Formula: see text] insulators were first predicted in graphene, which led to a veritable explosion of research in topological materials. We introduce a new topological classification of two-dimensional matter - the optical N-phases [Formula: see text]. This topological quantum number is connected to polarization transport and captured solely by the spatiotemporal dispersion of the susceptibility tensor χ. We verify N ≠ 0 in graphene with the underlying physical mechanism being repulsive Hall viscosity. An experimental probe, evanescent magneto-optic Kerr effect (e-MOKE) spectroscopy, is proposed to explore the N-invariant. We also develop topological circulators by exploiting gapless edge plasmons that are immune to back-scattering and navigate sharp defects with impunity. Our work indicates that graphene with repulsive Hall viscosity is the first candidate material for a topological electromagnetic phase of matter.

摘要

在过去三十年里,石墨烯已成为发现物质拓扑相的典型平台。陈绝缘体和量子自旋霍尔绝缘体均首次在石墨烯中被预言,这引发了拓扑材料研究的真正爆发。我们引入了一种二维物质的新拓扑分类——光学N相。这个拓扑量子数与极化输运相关,并且仅由磁化率张量χ的时空色散来表征。我们在石墨烯中验证了N≠0,其 underlying物理机制是排斥性霍尔黏度。我们提出了一种实验探测方法——倏逝磁光克尔效应(e-MOKE)光谱,以探索N不变量。我们还利用无隙边缘等离子体激元开发了拓扑环行器,这些等离子体激元对背散射免疫,并且能毫无阻碍地绕过尖锐缺陷。我们的工作表明,具有排斥性霍尔黏度的石墨烯是物质拓扑电磁相的首个候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161a/8342470/7af6d57c7f26/41467_2021_25097_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验