Suppr超能文献

基于广义朗之万方程的数据驱动分子建模。

Data-driven molecular modeling with the generalized Langevin equation.

作者信息

Grogan Francesca, Lei Huan, Li Xiantao, Baker Nathan A

机构信息

Pacific Northwest National Laboratory, Richland, WA 99352, United States.

Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States.

出版信息

J Comput Phys. 2020 Oct 1;418. doi: 10.1016/j.jcp.2020.109633. Epub 2020 Jun 3.

Abstract

The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.

摘要

分子动力学模拟的复杂性需要降维和粗粒化技术来实现可处理的计算。广义朗之万方程(GLE)描述了降维后的粗粒化动力学。尽管GLE的记忆核在非平衡动力学中起着关键作用,但由于其难以表征且求解成本高昂,往往被忽视。为了解决这些问题,我们构建了一种数据驱动的GLE有理近似。基于先前利用GLE模拟简单系统的工作,我们将这些结果扩展到更复杂的分子,其众多的自由度和复杂的动力学需要近似方法。我们通过与精确方法进行对比测试,并比较自相关和跃迁速率等可观测量,来证明我们近似方法的有效性。

相似文献

1
Data-driven molecular modeling with the generalized Langevin equation.
J Comput Phys. 2020 Oct 1;418. doi: 10.1016/j.jcp.2020.109633. Epub 2020 Jun 3.
2
Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
J Chem Phys. 2019 Sep 14;151(10):104109. doi: 10.1063/1.5096655.
6
Data-driven parameterization of the generalized Langevin equation.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14183-14188. doi: 10.1073/pnas.1609587113. Epub 2016 Nov 29.
7
Data-driven coarse-grained modeling of non-equilibrium systems.
Soft Matter. 2021 Jul 7;17(26):6404-6412. doi: 10.1039/d1sm00413a.
8
Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism.
Soft Matter. 2019 Oct 14;15(38):7567-7582. doi: 10.1039/c9sm01211g. Epub 2019 Aug 22.
9

引用本文的文献

1
Nearl: extracting dynamic features from molecular dynamics trajectories for machine learning tasks.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf321.
2
Accurate estimates of dynamical statistics using memory.
J Chem Phys. 2024 Feb 28;160(8). doi: 10.1063/5.0187145.
3
Pair-Reaction Dynamics in Water: Competition of Memory, Potential Shape, and Inertial Effects.
J Phys Chem B. 2022 Dec 15;126(49):10295-10304. doi: 10.1021/acs.jpcb.2c05923. Epub 2022 Dec 6.

本文引用的文献

1
A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness.
Comput Methods Appl Mech Eng. 2019 Jun 15;350:199-227. doi: 10.1016/j.cma.2019.03.014. Epub 2019 Mar 14.
2
The multi-dimensional generalized Langevin equation for conformational motion of proteins.
J Chem Phys. 2019 May 7;150(17):174113. doi: 10.1063/1.5055573.
3
Adhesion of a polymer-grafted nanoparticle to cells explored using generalized Langevin dynamics.
Soft Matter. 2018 Dec 12;14(48):9910-9922. doi: 10.1039/c8sm01579a.
4
Iterative Reconstruction of Memory Kernels.
J Chem Theory Comput. 2017 Jun 13;13(6):2481-2488. doi: 10.1021/acs.jctc.7b00274. Epub 2017 May 30.
5
Data-driven parameterization of the generalized Langevin equation.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14183-14188. doi: 10.1073/pnas.1609587113. Epub 2016 Nov 29.
6
The derivation and approximation of coarse-grained dynamics from Langevin dynamics.
J Chem Phys. 2016 Nov 28;145(20):204117. doi: 10.1063/1.4967936.
9
Direct construction of mesoscopic models from microscopic simulations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):026704. doi: 10.1103/PhysRevE.81.026704. Epub 2010 Feb 16.
10
Prediction of Fibrinogen Adsorption for Biodegradable Polymers: Integration of Molecular Dynamics and Surrogate Modeling.
Polymer (Guildf). 2007 Sep 10;48(19):5788-5801. doi: 10.1016/j.polymer.2007.07.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验