Suppr超能文献

基于 Mori-Zwanzig 形式论的聚合物溶液隐溶剂粗粒化建模。

Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism.

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.

出版信息

Soft Matter. 2019 Oct 14;15(38):7567-7582. doi: 10.1039/c9sm01211g. Epub 2019 Aug 22.

Abstract

We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for polymers in solution, which conserves the dynamic properties of the reference microscopic system. In particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are coarse-grained as one CG particle, and the solvent degrees of freedom are eliminated. The dynamics of the CG system is governed by the generalized Langevin equation (GLE) derived via the Mori-Zwanzig formalism, by which the CG variables can be directly and rigorously linked to the microscopic dynamics generated by molecular dynamics (MD) simulations. The solvent-mediated dynamics of polymers is modeled by the non-Markovian stochastic dynamics in GLE, where the memory kernel can be computed from the MD trajectories. To circumvent the difficulty in direct evaluation of the memory term and generation of colored noise, we exploit the equivalence between the non-Markovian dynamics and Markovian dynamics in an extended space. To this end, the CG system is supplemented with auxiliary variables that are coupled linearly to the momentum and among themselves, subject to uncorrelated Gaussian white noise. A high-order time-integration scheme is used to solve the extended dynamics to further accelerate the CG simulations. To assess, validate, and demonstrate the established implicit-solvent CG modeling, we have applied it to study four different types of polymers in solution. The dynamic properties of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and mean square displacement as functions of time are evaluated in both CG and MD simulations. Results show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG models to reproduce dynamic properties of the reference microscopic system and to characterize long-time dynamics of polymers in solution.

摘要

我们提出了一种自下而上的粗粒化(CG)方法,用于为溶液中的聚合物建立隐溶剂 CG 模型,该方法保留了参考微观系统的动态特性。特别是,数十到数百个键合聚合物原子(或 Lennard-Jones 珠)被粗粒化为一个 CG 粒子,并且消除了溶剂自由度。CG 系统的动力学由 Mori-Zwanzig 形式主义导出的广义朗之万方程(GLE)控制,通过该形式主义可以将 CG 变量直接且严格地与由分子动力学(MD)模拟产生的微观动力学联系起来。通过 GLE 中的非马尔可夫随机动力学来模拟聚合物的溶剂介导动力学,其中可以从 MD 轨迹计算出记忆核。为了避免直接评估记忆项和产生有色噪声的困难,我们利用非马尔可夫动力学和扩展空间中的马尔可夫动力学之间的等价性。为此,CG 系统补充了辅助变量,这些辅助变量与动量线性耦合,并且彼此之间也线性耦合,服从不相关的高斯白噪声。使用高阶时间积分方案来求解扩展动力学,以进一步加速 CG 模拟。为了评估、验证和展示所建立的隐溶剂 CG 建模,我们将其应用于研究溶液中的四种不同类型的聚合物。通过速度自相关函数、扩散系数和均方位移作为时间函数来评估聚合物的动态特性,这些特性在 CG 和 MD 模拟中都进行了评估。结果表明,具有辅助变量的扩展动力学可以构建任意高阶 CG 模型,以再现参考微观系统的动态特性,并描述溶液中聚合物的长时间动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验