Suppr超能文献

冠状病毒大流行的短期预测。

Short-term forecasting of the coronavirus pandemic.

作者信息

Doornik Jurgen A, Castle Jennifer L, Hendry David F

机构信息

Nuffield College, Oxford, UK.

Climate Econometrics and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, UK.

出版信息

Int J Forecast. 2022 Apr-Jun;38(2):453-466. doi: 10.1016/j.ijforecast.2020.09.003. Epub 2020 Sep 12.

Abstract

We have been publishing real-time forecasts of confirmed cases and deaths from coronavirus disease 2019 (COVID-19) since mid-March 2020 (published at www.doornik.com/COVID-19). These forecasts are short-term statistical extrapolations of past and current data. They assume that the underlying trend is informative regarding short-term developments but without requiring other assumptions about how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is spreading, or whether preventative policies are effective. Thus, they are complementary to the forecasts obtained from epidemiological models. The forecasts are based on extracting trends from windows of data using machine learning and then computing the forecasts by applying some constraints to the flexible extracted trend. These methods have been applied previously to various other time series data and they performed well. They have also proved effective in the COVID-19 setting where they provided better forecasts than some epidemiological models in the earlier stages of the pandemic.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac6b/7486833/ef12264d2efc/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验