Suppr超能文献

2021年初德国和波兰新冠疫情的国家及地方短期预测

National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021.

作者信息

Bracher Johannes, Wolffram Daniel, Deuschel Jannik, Görgen Konstantin, Ketterer Jakob L, Ullrich Alexander, Abbott Sam, Barbarossa Maria V, Bertsimas Dimitris, Bhatia Sangeeta, Bodych Marcin, Bosse Nikos I, Burgard Jan Pablo, Castro Lauren, Fairchild Geoffrey, Fiedler Jochen, Fuhrmann Jan, Funk Sebastian, Gambin Anna, Gogolewski Krzysztof, Heyder Stefan, Hotz Thomas, Kheifetz Yuri, Kirsten Holger, Krueger Tyll, Krymova Ekaterina, Leithäuser Neele, Li Michael L, Meinke Jan H, Miasojedow Błażej, Michaud Isaac J, Mohring Jan, Nouvellet Pierre, Nowosielski Jedrzej M, Ozanski Tomasz, Radwan Maciej, Rakowski Franciszek, Scholz Markus, Soni Saksham, Srivastava Ajitesh, Gneiting Tilmann, Schienle Melanie

机构信息

Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.

出版信息

Commun Med (Lond). 2022 Oct 31;2(1):136. doi: 10.1038/s43856-022-00191-8.

Abstract

BACKGROUND

During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021.

METHODS

We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study.

RESULTS

We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict.

CONCLUSIONS

Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.

摘要

背景

在新冠疫情期间,人们对流行病学指标短期发展预测有着浓厚兴趣,以便为决策者提供信息。在本研究中,我们评估了2021年1月至4月德国和波兰新冠确诊病例和死亡病例的概率实时预测。

方法

我们评估了德国和波兰新冠确诊病例和死亡病例的概率实时预测。这些预测由15个不同的预测模型发布,由独立研究团队运行。此外,我们研究了组合集成预测的性能。概率预测的评估基于适当的评分规则,以及区间覆盖比例以评估校准。本研究是一项预先注册的评估研究的一部分。

结果

我们发现,对于所考虑的目标,许多(尽管不是全部)模型在提前四周内的表现优于简单的基线模型。集成方法显示出非常好的相对性能。所涉及的时间段的特点是两国的非药物干预措施相当稳定,这使得短期预测比以前的时期更加直接。然而,报告病例的主要趋势变化,如2021年3月因B.1.1.7(阿尔法)变体上升导致的病例反弹,证明难以预测。

结论

多模型方法有助于提高流行病学预测的性能。然而,虽然基于当前病例和住院数据可以在一定程度上成功预测死亡人数,但病例数在相当短的时间范围之外的可预测性仍然很低。包括测序和流动性数据在内的其他数据源,在本研究中未广泛使用,可能有助于提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dcf/9622804/ef0788150b52/43856_2022_191_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验