Suppr超能文献

建模克罗地亚的 COVID-19 疫情:三种分析方法的比较。

Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches.

机构信息

Ozren Polašek, Department of Public Health, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia,

出版信息

Croat Med J. 2022 Jun 22;63(3):295-298. doi: 10.3325/cmj.2022.63.295.

Abstract

AIM

To facilitate the development of a COVID-19 predictive model in Croatia by analyzing three different methodological approaches.

METHOD

We used the historical data to explore the fit of the extended SEIRD compartmental model, the Heidler function, an exponential approximation in analyzing electromagnetic phenomena related to lightning strikes, and the Holt-Winters smoothing (HWS) for short-term epidemic predictions. We also compared various methods for the estimation of R0.

RESULTS

The R0 estimates for Croatia varied from 2.09 (95% CI 1.77-2.40) obtained by using an empirical post-hoc method to 2.28 (95% CI 2.27-2.28) when we assumed an exponential outbreak at the very beginning of the COVID-19 epidemic in Croatia. Although the SEIRD model provided a good fit for the early epidemic stages, it was outperformed by the Heidler function fit. HWS achieved accurate short-term predictions and depended the least on model entry parameters. Neither model performed well across the entire observed period, which was characterized by multiple wave-form events, influenced by the re-opening for the tourist season during the summer, mandatory masks use in closed spaces, and numerous measures introduced in retail stores and public places. However, an extension of the Heidler function achieved the best overall fit.

CONCLUSIONS

Predicting future epidemic events remains difficult because modeling relies on the accuracy of the information on population structure and micro-environmental exposures, constant changes of the input parameters, varying societal adherence to anti-epidemic measures, and changes in the biological interactions of the virus and hosts.

摘要

目的

通过分析三种不同的方法学方法,为克罗地亚开发 COVID-19 预测模型提供便利。

方法

我们使用历史数据来探索扩展 SEIRD 房室模型、Heidler 函数、分析与雷击相关的电磁现象的指数逼近以及短期流行预测的 Holt-Winters 平滑(HWS)的拟合情况。我们还比较了各种方法估算 R0 的方法。

结果

克罗地亚的 R0 估计值从使用经验后验方法获得的 2.09(95%CI 1.77-2.40)到假设 COVID-19 疫情在克罗地亚初期呈指数爆发时的 2.28(95%CI 2.27-2.28)不等。虽然 SEIRD 模型对早期流行阶段提供了良好的拟合,但拟合效果不如 Heidler 函数。HWS 实现了准确的短期预测,对模型输入参数的依赖性最小。在整个观察期间,两种模型都表现不佳,这一期间以多波形式事件为特征,受夏季旅游季节重新开放、在封闭空间强制使用口罩、以及在零售店和公共场所引入的众多措施的影响。然而,Heidler 函数的扩展版本实现了最佳的整体拟合。

结论

由于建模依赖于人口结构和微观环境暴露信息的准确性、输入参数的不断变化、社会对防疫措施的遵守程度的变化以及病毒和宿主的生物学相互作用的变化,因此预测未来的流行事件仍然很困难。

相似文献

本文引用的文献

9
Short-term forecasting of the coronavirus pandemic.冠状病毒大流行的短期预测。
Int J Forecast. 2022 Apr-Jun;38(2):453-466. doi: 10.1016/j.ijforecast.2020.09.003. Epub 2020 Sep 12.
10
Evidence-based medicine and COVID-19: what to believe and when to change.循证医学与 COVID-19:相信什么,何时改变。
Emerg Med J. 2020 Sep;37(9):572-575. doi: 10.1136/emermed-2020-210098. Epub 2020 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验