Information Engineering College, Shanghai Maritime University, Shanghai 201306, China.
Department of Gastroenterology, Eastern Hospital, Shanghai Sixth People Hospital, Shanghai 201306, China.
Comput Math Methods Med. 2020 Aug 18;2020:8374317. doi: 10.1155/2020/8374317. eCollection 2020.
We collected and sorted out the white light endoscopic images of some patients undergoing colonoscopy. The convolutional neural network model is used to detect whether the image contains lesions: CRC, colorectal adenoma (CRA), and colorectal polyps. The accuracy, sensitivity, and specificity rates are used as indicators to evaluate the model. Then, the instance segmentation model is used to locate and classify the lesions on the images containing lesions, and mAP (mean average precision), AP, and AP are used to evaluate the performance of an instance segmentation model.
In the process of detecting whether the image contains lesions, we compared ResNet50 with the other four models, that is, AlexNet, VGG19, ResNet18, and GoogLeNet. The result is that ResNet50 performs better than several other models. It scored an accuracy of 93.0%, a sensitivity of 94.3%, and a specificity of 90.6%. In the process of localization and classification of the lesion in images containing lesions by Mask R-CNN, its mAP, AP, and AP were 0.676, 0.903, and 0.833, respectively.
We developed and compared five models for the detection of lesions in white light endoscopic images. ResNet50 showed the optimal performance, and Mask R-CNN model could be used to locate and classify lesions in images containing lesions.
我们收集并整理了一些接受结肠镜检查的患者的白光内镜图像。使用卷积神经网络模型来检测图像是否包含病变:CRC、结直肠腺瘤(CRA)和结直肠息肉。准确率、敏感度和特异度率被用作评估模型的指标。然后,实例分割模型用于定位和分类包含病变的图像中的病变,并用 mAP(平均平均精度)、AP 和 AP 来评估实例分割模型的性能。
在检测图像是否包含病变的过程中,我们比较了 ResNet50 与其他四个模型,即 AlexNet、VGG19、ResNet18 和 GoogLeNet。结果表明 ResNet50 优于其他几个模型。它的准确率为 93.0%,敏感度为 94.3%,特异度为 90.6%。在使用 Mask R-CNN 对包含病变的图像中的病变进行定位和分类的过程中,其 mAP、AP 和 AP 分别为 0.676、0.903 和 0.833。
我们开发并比较了五种用于检测白光内镜图像中病变的模型。ResNet50 表现出最佳性能,而 Mask R-CNN 模型可用于定位和分类包含病变的图像中的病变。