Suppr超能文献

不平衡结直肠病变分类的双平衡损耗。

Double-Balanced Loss for Imbalanced Colorectal Lesion Classification.

机构信息

Information Engineering College, Shanghai Maritime University, Shanghai 201306, China.

Department of Gastroenterology, Eastern Hospital, Shanghai Sixth People's Hospital, Shanghai 201306, China.

出版信息

Comput Math Methods Med. 2022 Aug 8;2022:1691075. doi: 10.1155/2022/1691075. eCollection 2022.

Abstract

Colorectal cancer has a high incidence rate in all countries around the world, and the survival rate of patients is improved by early detection. With the development of object detection technology based on deep learning, computer-aided diagnosis of colonoscopy medical images becomes a reality, which can effectively reduce the occurrence of missed diagnosis and misdiagnosis. In medical image recognition, the assumption that training samples follow independent identical distribution (IID) is the key to the high accuracy of deep learning. However, the classification of medical images is unbalanced in most cases. This paper proposes a new loss function named the double-balanced loss function for the deep learning model, to improve the impact of datasets on classification accuracy. It introduces the effects of sample size and sample difficulty to the loss calculation and deals with both sample size imbalance and sample difficulty imbalance. And it combines with deep learning to build the medical diagnosis model for colorectal cancer. Experimentally verified by three colorectal white-light endoscopic image datasets, the double-balanced loss function proposed in this paper has better performance on the imbalance classification problem of colorectal medical images.

摘要

结直肠癌在世界各国的发病率都很高,早期发现可以提高患者的生存率。随着基于深度学习的目标检测技术的发展,结肠镜医学图像的计算机辅助诊断成为现实,这可以有效地降低漏诊和误诊的发生。在医学图像识别中,训练样本遵循独立同分布(IID)的假设是深度学习高精度的关键。然而,在大多数情况下,医学图像的分类是不平衡的。本文提出了一种新的损失函数,名为双平衡损失函数,用于深度学习模型,以提高数据集对分类准确性的影响。它将样本大小和样本难度的影响引入到损失计算中,并处理样本大小不平衡和样本难度不平衡的问题。并结合深度学习,构建结直肠癌的医学诊断模型。通过三个结直肠白光内窥镜图像数据集进行实验验证,本文提出的双平衡损失函数在结直肠医学图像的不平衡分类问题上具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9d/9377973/9c10c7f65c14/CMMM2022-1691075.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验