Sistani Masiar, Staudinger Philipp, Lugstein Alois
Institute of Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
J Phys Chem C Nanomater Interfaces. 2020 Sep 10;124(36):19858-19863. doi: 10.1021/acs.jpcc.0c05749. Epub 2020 Aug 13.
The performance of nanoscale electronic and photonic devices critically depends on the size and geometry and may significantly differ from those of their bulk counterparts. Along with confinement effects, the inherently high surface-to-volume ratio of nanostructures causes their properties to strongly depend on the surface. With a high and almost symmetric electron and hole mobility, Ge is considered to be a key material extending device performances beyond the limits imposed by miniaturization. Nevertheless, the deleterious effects of charge trapping are still a severe limiting factor for applications of Ge-based nanoscale devices. In this work, we show exemplarily for Ge nanowires that controlling the surface trap population by electrostatic gating can be utilized for effective surface doping. The reproducible transition from hole- to electron-dominated transport is clearly demonstrated by the observation of electron-driven negative differential resistance and provides a significant step towards a better understanding of charge-trapping-induced transport in Ge nanostructures.
纳米级电子和光子器件的性能严重依赖于尺寸和几何形状,并且可能与它们的块状对应物有显著差异。除了量子限制效应外,纳米结构固有的高表面积与体积比导致其性能强烈依赖于表面。由于具有高且几乎对称的电子和空穴迁移率,锗被认为是一种关键材料,能够突破小型化带来的限制,扩展器件性能。然而,电荷俘获的有害影响仍然是锗基纳米级器件应用的一个严重限制因素。在这项工作中,我们以锗纳米线为例表明,通过静电门控控制表面陷阱数量可用于有效的表面掺杂。通过观察电子驱动的负微分电阻,清晰地证明了从空穴主导传输到电子主导传输的可重复转变,这为更好地理解锗纳米结构中电荷俘获诱导的传输迈出了重要一步。