Suppr超能文献

用于三维生物打印的光固化海藻酸盐生物墨水的开发与表征

Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting.

作者信息

Mishbak H H, Cooper Glen, Bartolo P J

机构信息

Department of Biomedical Engineering, School of Engineering, University of Thi-Qar. Thi-Qar, Iraq.

Manufacturing Group, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UK.

出版信息

Int J Bioprint. 2019 Jul 1;5(2):189. doi: 10.18063/ijb.v5i2.189. eCollection 2019.

Abstract

Alginate is a biocompatible material suitable for biomedical applications, which can be processed under mild conditions on irradiation. This paper investigates the preparation and the rheological behavior of different pre-polymerized and polymerized alginate methacrylate systems for three-dimensional photopolymerization bioprinting. The effect of the functionalization time on the mechanical, morphological, swelling, and degradation characteristics of cross-linked alginate hydrogel is also discussed. Alginate was chemically-modified with methacrylate groups and different reaction times considered. Photocurable alginate systems were prepared by dissolving functionalized alginate with 0.5- 1.5% w/v photoinitiator solutions and cross-linked by ultraviolet light (8 mW/cm for 8 minutes).

摘要

藻酸盐是一种适用于生物医学应用的生物相容性材料,可在温和条件下通过辐照进行加工。本文研究了用于三维光聚合生物打印的不同预聚合和聚合甲基丙烯酸藻酸盐体系的制备及其流变行为。还讨论了功能化时间对交联藻酸盐水凝胶的力学、形态、溶胀和降解特性的影响。用甲基丙烯酸酯基团对藻酸盐进行化学改性,并考虑了不同的反应时间。通过将功能化藻酸盐溶解在0.5 - 1.5% w/v的光引发剂溶液中制备光固化藻酸盐体系,并通过紫外线(8 mW/cm,照射8分钟)进行交联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcbc/7481104/5a60086db949/IJB-5-2-189-g001.jpg

相似文献

1
Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting.
Int J Bioprint. 2019 Jul 1;5(2):189. doi: 10.18063/ijb.v5i2.189. eCollection 2019.
6
3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
Biomacromolecules. 2015 May 11;16(5):1489-96. doi: 10.1021/acs.biomac.5b00188. Epub 2015 Apr 7.
7
Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications.
J Mech Behav Biomed Mater. 2019 May;93:183-193. doi: 10.1016/j.jmbbm.2019.02.014. Epub 2019 Feb 14.
9
Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5714-5726. doi: 10.1021/acsami.8b13792. Epub 2019 Jan 30.
10
3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):6849-6857. doi: 10.1021/acsami.7b16059. Epub 2018 Feb 15.

引用本文的文献

1
Bioprinting vascularized skin analogs: a stepwise approach.
Burns Trauma. 2025 Mar 2;13:tkaf018. doi: 10.1093/burnst/tkaf018. eCollection 2025.
2
3D Bioprinting in Cancer Modeling and Biomedicine: From Print Categories to Biological Applications.
ACS Omega. 2024 Oct 25;9(44):44076-44100. doi: 10.1021/acsomega.4c06051. eCollection 2024 Nov 5.
3
Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels.
Biomacromolecules. 2024 Nov 11;25(11):7078-7097. doi: 10.1021/acs.biomac.4c00319. Epub 2024 Oct 14.
4
Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.
J Tissue Eng. 2024 Sep 24;15:20417314241282476. doi: 10.1177/20417314241282476. eCollection 2024 Jan-Dec.
5
Applications of Hydrogels in Osteoarthritis Treatment.
Biomedicines. 2024 Apr 22;12(4):923. doi: 10.3390/biomedicines12040923.
6
Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering.
Drug Deliv Transl Res. 2025 Jan;15(1):291-311. doi: 10.1007/s13346-024-01596-9. Epub 2024 Apr 25.
7
Evaluation of Various Types of Alginate Inks for Light-Mediated Extrusion 3D Printing.
Polymers (Basel). 2024 Apr 4;16(7):986. doi: 10.3390/polym16070986.
8
Smart alginate inks for tissue engineering applications.
Mater Today Bio. 2023 Oct 4;23:100829. doi: 10.1016/j.mtbio.2023.100829. eCollection 2023 Dec.
10
Call for special issues.
Int J Bioprint. 2019 Jul 31;5(2):228. doi: 10.18063/ijb.v5i2.228. eCollection 2019.

本文引用的文献

1
Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration.
Carbohydr Polym. 2018 Apr 1;185:56-62. doi: 10.1016/j.carbpol.2018.01.012. Epub 2018 Jan 4.
2
Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2018 Feb 1;83:195-201. doi: 10.1016/j.msec.2017.09.002. Epub 2017 Sep 22.
4
Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597.
5
Potential Use of Alginate-Based Carriers As Antifungal Delivery System.
Front Microbiol. 2017 Jan 30;8:97. doi: 10.3389/fmicb.2017.00097. eCollection 2017.
6
Applications of Alginate-Based Bioinks in 3D Bioprinting.
Int J Mol Sci. 2016 Nov 25;17(12):1976. doi: 10.3390/ijms17121976.
7
Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications.
Ann Biomed Eng. 2017 Jan;45(1):210-223. doi: 10.1007/s10439-016-1704-5. Epub 2016 Aug 8.
8
Impact of solvent quality on the network strength and structure of alginate gels.
Carbohydr Polym. 2016 Jun 25;144:289-96. doi: 10.1016/j.carbpol.2016.02.069. Epub 2016 Feb 24.
9
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.
Sci Adv. 2016 Apr 1;2(4):e1501381. doi: 10.1126/sciadv.1501381. eCollection 2016 Apr.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验