Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands.
J Phys Chem B. 2020 Oct 15;124(41):9047-9060. doi: 10.1021/acs.jpcb.0c08321. Epub 2020 Oct 6.
Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for C,N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.
动态核极化(DNP)是一种增强核磁共振(NMR)信号强度的强大方法,使其在生命和材料科学领域得到了前所未有的应用。一个终极目标是将 DNP 增强的固态 NMR 扩展到超高磁场,在那里可以集成最佳的光谱分辨率和灵敏度。三苯基氮氧自由基(TN)双自由基在高场 DNP 中引起了极大的兴趣,但它们在复杂(生物)分子中的应用迄今为止受到限制。在这里,我们报告了一种新的后修饰策略,用于合成亲水性 TN 双自由基,以改善它们在生物分子应用中的使用。最初,合成了三种带有氨基酸接头的 TN 双自由基(称为 NATriPols1-3)。EPR 研究表明,氨基酸接头的α位是这些双自由基的理想修饰位点,因为它们的电子-电子磁相互作用几乎不受该位置取代基的影响。基于这一发现,我们在α位上引入了吡啶二硫醚,合成了 NATriPol-4。通过硫醇点击化学对 NATriPol-4 进行后修饰,以定量的方式得到了各种 TN 双自由基,包括亲水性的 NATriPol-5。有趣的是,甘油/水基质中 C,N-脯氨酸的 18.8T 下 NATriPols 的 DNP 增强与它们的疏水性呈反比。重要的是,亲水性的 NATriPol-5 和 NATriPol-3 对生物分子(包括球状可溶性蛋白和靶向膜的肽)的应用与 TEMTriPol-1 和 AMUPol 相比,性能有显著提高。我们的工作提供了一种高效的一步法合成具有可调物理化学性质的新型极化剂的方法,从而加速了新双自由基在超高磁场下生物分子应用的优化。