Suppr超能文献

使用NeuroMark搜索可重现的脑特征:针对不同年龄人群和成像模态的模板

Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities.

作者信息

Fu Zening, Batta Ishaan, Wu Lei, Abrol Anees, Agcaoglu Oktay, Salman Mustafa S, Du Yuhui, Iraji Armin, Shultz Sarah, Sui Jing, Calhoun Vince D

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States.

出版信息

Neuroimage. 2024 Apr 15;292:120617. doi: 10.1016/j.neuroimage.2024.120617. Epub 2024 Apr 16.

Abstract

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.

摘要

数据驱动分析面临的一个主要挑战是,基于人群的研究普遍适用性较差与刻画更多个体、研究和人群特异性变异性之间的平衡。我们之前引入了一个名为NeuroMark的全自动空间受限独立成分分析(ICA)框架及其功能磁共振成像(fMRI)模板。NeuroMark已成功应用于众多研究,识别出跨数据集和疾病均可重现的脑标记物。首个NeuroMark模板是基于年轻成人队列构建的。我们最近通过使用超过10万名受试者创建了一个标准化的规范性多空间尺度功能模板来扩展这一计划,旨在提高涉及不同队列的研究之间的普遍适用性和可比性。虽然理想情况下需要一个贯穿整个生命周期的统一模板,但全面研究不同年龄人群成分之间的异同,可能有助于通过揭示整个生命周期中复制性最强和最具变异性的网络特征,系统地改变我们对人类大脑的理解。在这项工作中,我们对NeuroMark模板进行了两项重大扩展,首先为婴儿、青少年和老年队列生成可复制的fMRI模板,其次纳入了结构磁共振成像(sMRI)和扩散磁共振成像(dMRI)模态。具体而言,我们基于来自四个数据集的6000次静息态扫描构建了时空fMRI模板。这是首次尝试创建涵盖整个生命周期动态脑发育的稳健ICA模板。对于sMRI和dMRI数据,我们使用了两个大型公开可用数据集,包括超过30000次扫描来构建可靠的模板。我们采用空间相似性分析来识别可复制的模板,并研究不同年龄人群中独特和相似模式的反映程度。我们的结果表明,即使在极端年龄差异的情况下,所得适配成分的相似性也非常高。有了新模板,NeuroMark框架使我们能够进行特定年龄的适配,并捕捉适用于每种模态的特征,从而有助于跨脑疾病识别生物标志物。总之,本研究证明了NeuroMark模板的普遍适用性,并表明新模板在提高心理健康研究准确性以及推进我们对生命周期和跨模态改变理解方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6bf/11416721/049fece45385/nihms-1989413-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验