Université de Lorraine and CNRS, LPCT, UMR 7019, Vandoeuvre-lès-Nancy 54506, France.
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
Phys Chem Chem Phys. 2020 Oct 7;22(38):21685-21695. doi: 10.1039/d0cp04137h.
Biomolecules have complex structures, and noncovalent interactions are crucial to determine their conformations and functionalities. It is therefore critical to be able to describe them in an accurate but efficient manner in these systems. In this context density functional theory (DFT) could provide a powerful tool to simulate biological matter either directly for relatively simple systems or coupled with classical simulations like the QM/MM (quantum mechanics/molecular mechanics) approach. Additionally, DFT could play a fundamental role to fit the parameters of classical force fields or to train machine learning potentials to perform large scale molecular dynamics simulations of biological systems. Yet, local or semi-local approximations used in DFT cannot describe van der Waals (vdW) interactions, one of the essential noncovalent interactions in biomolecules, since they lack a proper description of long range correlation effects. However, many efficient and reasonably accurate methods are now available for the description of van der Waals interactions within DFT. In this work, we establish the accuracy of several state-of-the-art vdW-aware functionals by considering 275 biomolecules including interacting DNA and RNA bases, peptides and biological inhibitors and compare our results for the energy with highly accurate wavefunction based calculations. Most methods considered here can achieve close to predictive accuracy. In particular, the non-local vdW-DF2 functional is revealed to be the best performer for biomolecules, while among the vdW-corrected DFT methods, uMBD is also recommended as a less accurate but faster alternative.
生物分子具有复杂的结构,非共价相互作用对于确定它们的构象和功能至关重要。因此,在这些系统中以准确而高效的方式描述它们是至关重要的。在这种情况下,密度泛函理论(DFT)可以为模拟生物物质提供一种强大的工具,无论是对于相对简单的系统直接进行模拟,还是与经典模拟(如QM/MM 方法)相结合。此外,DFT 可以在拟合经典力场的参数或训练机器学习势能方面发挥基础作用,以对生物系统进行大规模分子动力学模拟。然而,DFT 中使用的局部或半局部近似不能描述范德华(vdW)相互作用,因为它们缺乏对长程相关效应的适当描述,而范德华相互作用是生物分子中必不可少的非共价相互作用之一。然而,现在有许多高效且相当准确的方法可用于在 DFT 中描述范德华相互作用。在这项工作中,我们通过考虑包括相互作用的 DNA 和 RNA 碱基、肽和生物抑制剂在内的 275 种生物分子,来确定几种最先进的 vdW 感知泛函的准确性,并将我们的能量结果与基于高精度波函数的计算进行比较。这里考虑的大多数方法都可以达到接近预测的准确性。特别是,非局部 vdW-DF2 泛函被证明是生物分子的最佳表现者,而在 vdW 校正的 DFT 方法中,uMBD 也被推荐为一种不太准确但更快的替代方法。