Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany.
Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark.
Mar Drugs. 2020 Sep 21;18(9):481. doi: 10.3390/md18090481.
Angiogenesis, the formation of new blood vessels from existing ones, is an essential process for successful bone regeneration. Further, angiogenesis is a key factor for the development of bone-related disorders like osteosarcoma or arthritis. Fucoidans, sulfated polysaccharides from brown algae, have been shown to affect angiogenesis as well as a series of other physiological processes including inflammation or infection. However, the chemical properties of fucoidan which define the biological activity vary tremendously, making a prediction of the bioactivity or the corresponding therapeutic effect difficult. In this study, we compare the effect of four chemically characterized high molecular weight fucoidan extracts from subsp. (FE_crude and fractions F1, F2, F3) on angiogenic and osteogenic processes in bone-related primary mono- and co-culture cell systems. By determining the gene expression and protein levels of the regulatory molecules vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG-1), ANG-2 and stromal-derived factor 1 (SDF-1), we show that the extracted fucoidans negatively influence angiogenic and osteogenic processes in both the mono- and co-culture systems. We demonstrate that purer fucoidan extracts with a high fucose and sulfate content show stronger effects on these processes. Immunocytochemistry of the co-culture system revealed that treatment with FE_F3, containing the highest fucose and sulfate content, impaired the formation of angiogenic tube-like structures, indicating the anti-angiogenic properties of the tested fucoidans. This study highlights how chemical properties of fucoidan influence its bioactivity in a bone-related context and discusses how the observed phenotypes can be explained on a molecular level-knowledge that is indispensable for future therapies based on fucoidans.
血管生成,即从现有血管中形成新血管,是成功骨再生的必要过程。此外,血管生成是骨相关疾病(如骨肉瘤或关节炎)发展的关键因素。褐藻来源的硫酸化多糖岩藻聚糖已被证明可影响血管生成以及一系列其他生理过程,包括炎症或感染。然而,岩藻聚糖的化学性质决定了其生物活性差异巨大,这使得对其生物活性或相应治疗效果进行预测变得困难。在这项研究中,我们比较了四种化学性质明确的褐藻来源高分子量岩藻聚糖提取物(FE_crude 及 F1、F2、F3 级分)对骨相关原代单培养和共培养细胞系统中血管生成和成骨过程的影响。通过测定调节分子血管内皮生长因子(VEGF)、血管生成素 1(ANG-1)、血管生成素 2(ANG-2)和基质衍生因子 1(SDF-1)的基因表达和蛋白水平,我们表明提取的岩藻聚糖在单培养和共培养系统中均对血管生成和成骨过程产生负面影响。我们证明,具有高岩藻糖和硫酸盐含量的更纯岩藻聚糖提取物对这些过程的影响更强。共培养系统的免疫细胞化学显示,含有最高岩藻糖和硫酸盐含量的 FE_F3 处理会损害血管生成管状结构的形成,表明测试的岩藻聚糖具有抗血管生成特性。本研究强调了岩藻聚糖的化学性质如何在骨相关环境中影响其生物活性,并讨论了如何在分子水平上解释观察到的表型,这是基于岩藻聚糖的未来疗法所必需的知识。