Suppr超能文献

基于人工智能的算法在利用二维超声心动图参数和临床特征识别右心室功能减退患者中的比较。

A comparison of artificial intelligence-based algorithms for the identification of patients with depressed right ventricular function from 2-dimentional echocardiography parameters and clinical features.

作者信息

Ahmad Ali, Ibrahim Zahi, Sakr Georges, El-Bizri Abdallah, Masri Lara, Elhajj Imad H, El-Hachem Nehme, Isma'eel Hussain

机构信息

Vascular Medicine Program, Division of Cardiology, American University of Beirut, Beirut, Lebanon.

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

Cardiovasc Diagn Ther. 2020 Aug;10(4):859-868. doi: 10.21037/cdt-20-471.

Abstract

BACKGROUND

Recognizing low right ventricular (RV) function from 2-dimentiontial echocardiography (2D-ECHO) is challenging when parameters are contradictory. We aim to develop a model to predict low RV function integrating the various 2D-ECHO parameters in reference to cardiac magnetic resonance (CMR)-the gold standard.

METHODS

We retrospectively identified patients who underwent a 2D-ECHO and a CMR within 3 months of each other at our institution (American University of Beirut Medical Center). We extracted three parameters (TAPSE, S' and FAC) that are classically used to assess RV function. We have assessed the ability of 2D-ECHO derived parameters and clinical features to predict RV function measured by the gold standard CMR. We compared outcomes from four machine learning algorithms, widely used in the biomedical community to solve classification problems.

RESULTS

One hundred fifty-five patients were identified and included in our study. Average age was 43±17.1 years old and 52/156 (33.3%) were females. According to CMR, 21 patients were identified to have RV dysfunction, with an RVEF of 34.7%±6.4%, as opposed to 54.7%±6.7% in the normal RV population (P<0.0001). The Random Forest model was able to detect low RV function with an AUC =0.80, while general linear regression performed poorly in our population with an AUC of 0.62.

CONCLUSIONS

In this study, we trained and validated an ML-based algorithm that could detect low RV function from clinical and 2D-ECHO parameters. The algorithm has two advantages: first, it performed better than general linear regression, and second, it integrated the various 2D-ECHO parameters.

摘要

背景

当二维超声心动图(2D-ECHO)的参数相互矛盾时,识别右心室(RV)功能降低具有挑战性。我们旨在开发一种模型,以参考心脏磁共振成像(CMR)这一金标准,整合各种2D-ECHO参数来预测右心室功能降低。

方法

我们回顾性地确定了在我们机构(贝鲁特美国大学医学中心)彼此在3个月内接受2D-ECHO和CMR检查的患者。我们提取了三个经典用于评估右心室功能的参数(三尖瓣环平面收缩期位移、S'和右心室面积变化分数)。我们评估了2D-ECHO得出的参数和临床特征预测由金标准CMR测量的右心室功能的能力。我们比较了生物医学领域广泛用于解决分类问题的四种机器学习算法的结果。

结果

共识别出155例患者并纳入我们的研究。平均年龄为43±17.1岁,52/156(33.3%)为女性。根据CMR,21例患者被确定存在右心室功能障碍,右心室射血分数为34.7%±6.4%,而正常右心室人群为54.7%±6.7%(P<0.0001)。随机森林模型能够检测到右心室功能降低,曲线下面积(AUC)=0.80,而在我们的人群中一般线性回归表现不佳,AUC为0.62。

结论

在本研究中,我们训练并验证了一种基于机器学习的算法,该算法可从临床和2D-ECHO参数中检测出右心室功能降低。该算法有两个优点:第一,它比一般线性回归表现更好;第二,它整合了各种2D-ECHO参数。

相似文献

本文引用的文献

7
Evaluation of the right ventricle by echocardiography: particularities and major challenges.超声心动图对右心室的评估:特点与主要挑战
Expert Rev Cardiovasc Ther. 2018 Apr;16(4):259-275. doi: 10.1080/14779072.2018.1449646. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验