文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能和刺激响应型纳米载体用于靶向治疗递送。

Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery.

机构信息

Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.

Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.

出版信息

Expert Opin Drug Deliv. 2021 Feb;18(2):205-227. doi: 10.1080/17425247.2021.1828339. Epub 2020 Oct 8.


DOI:10.1080/17425247.2021.1828339
PMID:32969740
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7904578/
Abstract

INTRODUCTION: Nanocarrier-based delivery systems offer multiple benefits to overcome limitations of the traditional drug dosage forms, such as protection of the drug, enhanced bioavailability, targeted delivery to disease site, etc. Nanocarriers have exhibited tremendous successes in targeted delivery of therapeutics to the desired tissues and cells with improved bioavailability, high drug loading capacity, enhanced intracellular delivery, and better therapeutic effect. A specific design of stimuli-responsive nanocarriers allows for changing their structural and physicochemical properties in response to exogenous and endogenous stimuli. These nanocarriers show a promise in site specific controlled release of therapeutics under certain physiological conditions or external stimuli. AREAS COVERED: This review highlights recent progresses on the multifunctional and stimuli-sensitive nanocarriers for targeted therapeutic drug delivery applications. EXPERT OPINION: The progress from single functional to multifunctional nanocarriers has shown tremendous potential for targeted delivery of therapeutics. On our opinion, the future of targeted delivery of drugs, nucleic acids, and other substances belongs to the site-targeted multifunctional and stimuli-based nanoparticles with controlled release. Targeting of nanocarriers to the disease site enhance the efficacy of the treatment by delivering more therapeutics specifically to the affected cells and substantially limiting adverse side effects upon healthy organs, tissues, and cells.

摘要

简介:基于纳米载体的递药系统为克服传统药物剂型的局限性提供了多种优势,例如保护药物、提高生物利用度、靶向递送至疾病部位等。纳米载体在将治疗药物靶向递送至所需组织和细胞方面取得了巨大成功,提高了生物利用度、高载药量、增强细胞内递药能力和更好的治疗效果。刺激响应型纳米载体的特定设计允许其响应外源性和内源性刺激来改变其结构和物理化学性质。这些纳米载体有望在特定生理条件或外部刺激下实现治疗药物的位点特异性控制释放。

涵盖领域:本文重点介绍了用于靶向治疗药物递送应用的多功能和刺激敏感型纳米载体的最新进展。

专家意见:从单一功能到多功能纳米载体的进展为治疗药物的靶向递送展示了巨大的潜力。我们认为,药物、核酸和其他物质的靶向递送的未来属于具有控制释放的基于位点靶向的多功能和刺激响应型纳米颗粒。纳米载体对疾病部位的靶向作用通过将更多的治疗药物特异性递送至受影响的细胞,同时大大限制对健康器官、组织和细胞的不良副作用,从而增强治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/dd30a6b5ae13/nihms-1632463-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/1419df7e40cd/nihms-1632463-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/5346cd3953bb/nihms-1632463-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/23fecf77a0f0/nihms-1632463-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/0b7c9d4aa685/nihms-1632463-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/d35d4b8f9489/nihms-1632463-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/48adb978611c/nihms-1632463-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/22b5ce45adf8/nihms-1632463-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/2d37fb3b716d/nihms-1632463-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/15ddb4cd679f/nihms-1632463-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/17fd60d772e9/nihms-1632463-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/53e1252aa986/nihms-1632463-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/47d8aaddd33b/nihms-1632463-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/e36a14dbbfc9/nihms-1632463-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/dd30a6b5ae13/nihms-1632463-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/1419df7e40cd/nihms-1632463-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/5346cd3953bb/nihms-1632463-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/23fecf77a0f0/nihms-1632463-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/0b7c9d4aa685/nihms-1632463-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/d35d4b8f9489/nihms-1632463-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/48adb978611c/nihms-1632463-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/22b5ce45adf8/nihms-1632463-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/2d37fb3b716d/nihms-1632463-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/15ddb4cd679f/nihms-1632463-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/17fd60d772e9/nihms-1632463-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/53e1252aa986/nihms-1632463-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/47d8aaddd33b/nihms-1632463-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/e36a14dbbfc9/nihms-1632463-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ad/7904578/dd30a6b5ae13/nihms-1632463-f0014.jpg

相似文献

[1]
Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery.

Expert Opin Drug Deliv. 2021-2

[2]
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment.

Pharmaceutics. 2022-10-15

[3]
Light-Responsive and Dual-Targeting Liposomes: From Mechanisms to Targeting Strategies.

Molecules. 2024-1-30

[4]
Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.

Saudi Pharm J. 2020-3

[5]
Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-1

[6]
A review of stimuli-responsive nanocarriers for drug and gene delivery.

J Control Release. 2008-3-20

[7]
Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer.

Adv Drug Deliv Rev. 2017-4-7

[8]
Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms.

Expert Opin Drug Deliv. 2022-11

[9]
Chemo-drug Controlled-release Strategies of Nanocarrier in the Development of Cancer Therapeutics.

Curr Med Chem. 2021

[10]
Recent Advances in Endogenous and Exogenous Stimuli-Responsive Nanocarriers for Drug Delivery and Therapeutics.

Chem Pharm Bull (Tokyo). 2017

引用本文的文献

[1]
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Anticancer Phytochemical Delivery: Advances, Challenges, and Future Prospects.

Pharmaceutics. 2025-8-21

[2]
Redox-Regulated Pathways in Glioblastoma Stem-like Cells: Mechanistic Insights and Therapeutic Implications.

Brain Sci. 2025-8-19

[3]
A comprehensive review on plant-derived bioactive saponins as promising antimicrobial agents: from bioavailability challenges, molecular mechanistic insights to therapeutic applications.

Naunyn Schmiedebergs Arch Pharmacol. 2025-8-21

[4]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

[5]
Mechanisms and Nanomedicine Interventions of Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion: A Mini Review.

Int J Nanomedicine. 2025-7-25

[6]
Nanomaterial-based encapsulation of biochemicals for targeted sepsis therapy.

Mater Today Bio. 2025-7-4

[7]
Synthesis and Characterization of Temperature- and -Responsive PIA-b-PNIPAM@FeO Nanocomposites.

Nanomaterials (Basel). 2025-7-4

[8]
The Impact of Drug Delivery Systems on Pharmacokinetics and Drug-Drug Interactions in Neuropsychiatric Treatment.

Cureus. 2025-6-8

[9]
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger.

Polymers (Basel). 2025-6-13

[10]
Nanoparticle-based approaches for vascular inflammation in managing hypertension: advancing molecular mechanisms and treatment strategies.

Drug Deliv Transl Res. 2025-6-10

本文引用的文献

[1]
Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents.

ACS Biomater Sci Eng. 2017-7-10

[2]
Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery?

Ther Deliv. 2020-7

[3]
A Methodological Safe-by-Design Approach for the Development of Nanomedicines.

Front Bioeng Biotechnol. 2020-4-2

[4]
pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging.

J Mater Chem B. 2017-9-7

[5]
How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept.

Front Bioeng Biotechnol. 2020-3-10

[6]
Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment.

Biomater Sci. 2020-3-31

[7]
Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy.

Theranostics. 2019-10-22

[8]
Efficient Delivery of Therapeutic siRNA by FeO Magnetic Nanoparticles into Oral Cancer Cells.

Pharmaceutics. 2019-11-17

[9]
Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics.

Nat Commun. 2019-9-27

[10]
Nanocarrier-based systems for targeted and site specific therapeutic delivery.

Adv Drug Deliv Rev. 2019-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索