Suppr超能文献

一种使用 T 细胞亚群作为预测因子的网络可视化工具,用于评估 COVID-19 患者的严重程度。

A web visualization tool using T cell subsets as the predictor to evaluate COVID-19 patient's severity.

机构信息

Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, Hubei Province, China.

Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki, Kanagawa, Japan.

出版信息

PLoS One. 2020 Sep 24;15(9):e0239695. doi: 10.1371/journal.pone.0239695. eCollection 2020.

Abstract

Wuhan, China was the epicenter of the 2019 coronavirus outbreak. As a designated hospital for COVID-19, Wuhan Pulmonary Hospital has received over 700 COVID-19 patients. With the COVID-19 becoming a pandemic all over the world, we aim to share our epidemiological and clinical findings with the global community. We studied 340 confirmed COVID-19 patients with clear clinical outcomes from Wuhan Pulmonary Hospital, including 310 discharged cases and 30 death cases. We analyzed their demographic, epidemiological, clinical and laboratory data and implemented our findings into an interactive, free access web application to evaluate COVID-19 patient's severity level. Our results show that baseline T cell subsets results differed significantly between the discharged cases and the death cases in Mann Whitney U test: Total T cells (p < 0.001), Helper T cells (p <0.001), Suppressor T cells (p <0.001), and TH/TSC (Helper/Suppressor ratio, p<0.001). Multivariate logistic regression model with death or discharge as the outcome resulted in the following significant predictors: age (OR 1.05, 95% CI, 1.00 to 1.10), underlying disease status (OR 3.42, 95% CI, 1.30 to 9.95), Helper T cells on the log scale (OR 0.22, 95% CI, 0.12 to 0.40), and TH/TSC on the log scale (OR 4.80, 95% CI, 2.12 to 11.86). The AUC for the logistic regression model is 0.90 (95% CI, 0.84 to 0.95), suggesting the model has a very good predictive power. Our findings suggest that while age and underlying diseases are known risk factors for poor prognosis, patients with a less damaged immune system at the time of hospitalization had higher chance of recovery. Close monitoring of the T cell subsets might provide valuable information of the patient's condition change during the treatment process. Our web visualization application can be used as a supplementary tool for the evaluation.

摘要

中国武汉是 2019 年冠状病毒爆发的中心。作为 COVID-19 的指定医院,武汉肺科医院已接收超过 700 名 COVID-19 患者。随着 COVID-19 在全球范围内成为大流行,我们旨在与全球社区分享我们的流行病学和临床发现。我们研究了来自武汉肺科医院的 340 例明确临床结局的确诊 COVID-19 患者,包括 310 例出院病例和 30 例死亡病例。我们分析了他们的人口统计学、流行病学、临床和实验室数据,并将我们的发现纳入到一个交互式、免费访问的网络应用程序中,以评估 COVID-19 患者的严重程度。我们的结果表明,在曼-惠特尼 U 检验中,基线 T 细胞亚群结果在出院病例和死亡病例之间有显著差异:总 T 细胞(p<0.001)、辅助 T 细胞(p<0.001)、抑制 T 细胞(p<0.001)和 TH/TSC(辅助/抑制比,p<0.001)。以死亡或出院为结局的多变量逻辑回归模型得出以下显著预测因子:年龄(OR 1.05,95%CI,1.00 至 1.10)、基础疾病状态(OR 3.42,95%CI,1.30 至 9.95)、对数标度上的辅助 T 细胞(OR 0.22,95%CI,0.12 至 0.40)和对数标度上的 TH/TSC(OR 4.80,95%CI,2.12 至 11.86)。逻辑回归模型的 AUC 为 0.90(95%CI,0.84 至 0.95),表明该模型具有很好的预测能力。我们的研究结果表明,虽然年龄和基础疾病是预后不良的已知危险因素,但在住院时免疫系统受损程度较低的患者康复的机会更高。密切监测 T 细胞亚群可能为治疗过程中患者病情变化提供有价值的信息。我们的网络可视化应用程序可用作评估的补充工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8037/7514096/3f8c357d4396/pone.0239695.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验