Suppr超能文献

预后营养指数与中国武汉 COVID-19 患者的死亡率相关。

The Prognostic Nutritional Index is associated with mortality of COVID-19 patients in Wuhan, China.

机构信息

Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.

COVID19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, China.

出版信息

J Clin Lab Anal. 2020 Oct;34(10):e23566. doi: 10.1002/jcla.23566. Epub 2020 Sep 11.

Abstract

BACKGROUND

Declared as pandemic by WHO, the coronavirus disease 2019 (COVID-19) pneumonia has brought great damage to human health. The uncontrollable spread and poor progression of COVID-19 have attracted much attention from all over the world. We designed this study to develop a prognostic nomogram incorporating Prognostic nutritional index (PNI) in COVID-19 patients.

METHODS

Patients confirmed with COVID-19 and treated in Renmin Hospital of Wuhan University from January to February 2020 were included in this study. We used logistic regression analysis to find risk factors of mortality in these patients. A prognostic nomogram was constructed and receiver operating characteristics (ROC) curve was drawn to evaluate the predictive value of PNI and this prognostic model.

RESULTS

Comparison of baseline characteristics showed non-survivors had higher age (P < .001), male ratio (P = .038), neutrophil-to-lymphocyte ratio (NLR) (P < .001), platelet-to-lymphocyte ratio (PLR) (P < .001), and PNI (P < .001) than survivors. In the multivariate logistic regression analysis, independent risk factors of mortality in COVID-19 patients included white blood cell (WBC) (OR 1.285, P = .039), PNI (OR 0.790, P = .029), LDH (OR 1.011, P < .015). These three factors were combined to build the prognostic model. Area under the ROC curve (AUC) of only PNI and the prognostic model was 0.849 (95%Cl 0.811-0.888) and 0.950 (95%Cl 0.922-0.978), respectively. And calibration plot showed good stability of the prognostic model.

CONCLUSION

This research indicates PNI is independently associated with the mortality of COVID-19 patients. Prognostic model incorporating PNI is beneficial for clinicians to evaluate progression and strengthen monitoring for COVID-19 patients.

摘要

背景

世界卫生组织宣布,2019 年冠状病毒病(COVID-19)肺炎对人类健康造成了巨大损害。COVID-19 不可控的传播和不良进展引起了全世界的关注。我们设计了这项研究,以开发一个包含预后营养指数(PNI)的 COVID-19 患者预后列线图。

方法

本研究纳入了 2020 年 1 月至 2 月在武汉大学人民医院确诊并接受治疗的 COVID-19 患者。我们使用逻辑回归分析来寻找这些患者死亡的危险因素。构建了一个预后列线图,并绘制了接收者操作特征(ROC)曲线,以评估 PNI 和该预后模型的预测价值。

结果

基线特征比较显示,非幸存者的年龄更高(P<.001)、男性比例更高(P=.038)、中性粒细胞与淋巴细胞比值(NLR)更高(P<.001)、血小板与淋巴细胞比值(PLR)更高(P<.001)、预后营养指数(PNI)更低(P<.001)。多变量逻辑回归分析显示,COVID-19 患者死亡的独立危险因素包括白细胞(WBC)(OR 1.285,P=.039)、PNI(OR 0.790,P=.029)、乳酸脱氢酶(LDH)(OR 1.011,P<.015)。将这三个因素结合起来构建预后模型。仅 PNI 和预后模型的 ROC 曲线下面积(AUC)分别为 0.849(95%Cl 0.811-0.888)和 0.950(95%Cl 0.922-0.978)。校准图显示预后模型具有良好的稳定性。

结论

本研究表明 PNI 与 COVID-19 患者的死亡率独立相关。包含 PNI 的预后模型有助于临床医生评估 COVID-19 患者的病情进展并加强监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc43/7595894/baf36c49fc2c/JCLA-34-e23566-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验