Suppr超能文献

基于深度神经网络的欠采样磁共振图像重建中的迁移学习。

Transfer learning in deep neural network based under-sampled MR image reconstruction.

机构信息

Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan.

Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan.

出版信息

Magn Reson Imaging. 2021 Feb;76:96-107. doi: 10.1016/j.mri.2020.09.018. Epub 2020 Sep 24.

Abstract

In Magnetic Resonance Imaging (MRI), the success of deep learning-based under-sampled MR image reconstruction depends on: (i) size of the training dataset, (ii) generalization capabilities of the trained neural network. Whenever there is a mismatch between the training and testing data, there is a need to retrain the neural network from scratch with thousands of MR images obtained using the same protocol. This may not be possible in MRI as it is costly and time consuming to acquire data. In this research, a transfer learning approach i.e. end-to-end fine tuning is proposed for U-Net to address the data scarcity and generalization problems of deep learning-based MR image reconstruction. First the generalization capabilities of a pre-trained U-Net (initially trained on the human brain images of 1.5 T scanner) are assessed for: (a) MR images acquired from MRI scanners of different magnetic field strengths, (b) MR images of different anatomies and (c) MR images under-sampled by different acceleration factors. Later, end-to-end fine tuning of the pre-trained U-Net is proposed for the reconstruction of the above-mentioned MR images (i.e. (a), (b) and (c)). The results show successful reconstructions obtained from the proposed method as reflected by the Structural SIMilarity index, Root Mean Square Error, Peak Signal-to-Noise Ratio and central line profile of the reconstructed images.

摘要

在磁共振成像(MRI)中,基于深度学习的欠采样磁共振图像重建的成功取决于:(i)训练数据集的大小,(ii)训练神经网络的泛化能力。只要训练数据和测试数据之间存在不匹配,就需要使用相同协议获得的数千张 MR 图像从头开始重新训练神经网络。在 MRI 中,这可能是不可能的,因为获取数据既昂贵又耗时。在这项研究中,提出了一种端到端微调的迁移学习方法,即端到端微调,以解决基于深度学习的 MR 图像重建中的数据稀缺和泛化问题。首先,评估了预先训练的 U-Net 的泛化能力(最初在 1.5T 扫描仪的人脑图像上进行训练),用于:(a)不同磁场强度的 MRI 扫描仪获取的 MR 图像,(b)不同解剖结构的 MR 图像和(c)不同加速因子下的 MR 图像。后来,针对上述 MR 图像(即(a)、(b)和(c))提出了对预训练的 U-Net 进行端到端微调。结果表明,所提出的方法可以成功重建图像,反映在结构相似性指数、均方根误差、峰值信噪比和重建图像的中心线轮廓上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验