RGD- 和 VEGF 模拟肽表位功能化自组装肽水凝胶促进牙本质牙髓复合体再生。

RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration.

机构信息

Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, People's Republic of China.

Department of Preventive Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People's Republic of China.

出版信息

Int J Nanomedicine. 2020 Sep 8;15:6631-6647. doi: 10.2147/IJN.S253576. eCollection 2020.

Abstract

INTRODUCTION

Cell-based tissue engineering is a promising method for dentin-pulp complex (DPC) regeneration. The challenges associated with DPC regeneration include the generation of a suitable microenvironment that facilitates the complete odontogenic differentiation of dental pulp stem cells (DPSCs) and the rapid induction of angiogenesis. Thus, the survival and subsequent differentiation of DPSCs are limited. Extracellular matrix (ECM)-like biomimetic hydrogels composed of self-assembling peptides (SAPs) were developed to provide an appropriate microenvironment for DPSCs. For functional DPC regeneration, the most important considerations are to provide an environment that promotes the adequate attachment of DPSCs and rapid vascularization of the regenerating pulp. Morphogenic signals in the form of growth factors (GFs) have been incorporated into SAPs to promote productive DPSC behaviors. However, the use of GFs has several drawbacks. We envision using a scaffold with SAPs coupled with long-term factors to increase DPSC attachment and vascularization as a method to address this challenge.

METHODS

In this study, we developed synthetic material for an SAP-based scaffold with RGD- and vascular endothelial growth factor (VEGF)-mimetic peptide epitopes with the dual functions of dentin and pulp regeneration. DPSCs and human umbilical vein endothelial cells (HUVECs) were used to evaluate the biological effects of SAP-based scaffolds. Furthermore, the pulpotomized molar rat model was employed to test the reparative and regenerative effects of SAP-based scaffolds.

RESULTS

This scaffold simultaneously presented RGD- and VEGF-mimetic peptide epitopes and provided a 3D microenvironment for DPSCs. DPSCs grown on this composite scaffold exhibited significantly improved survival and angiogenic and odontogenic differentiation in the multifunctionalized group in vitro. Histological and functional evaluations of a partially pulpotomized rat model revealed that the multifunctionalized scaffold was superior to other options with respect to stimulating pulp recovery and dentin regeneration in vivo.

CONCLUSION

Based on our data obtained with the functionalized SAP scaffold, a 3D microenvironment that supports stem cell adhesion and angiogenesis was generated that has great potential for dental pulp tissue engineering and regeneration.

摘要

简介

基于细胞的组织工程是牙本质牙髓复合体(DPC)再生的一种很有前途的方法。DPC 再生面临的挑战包括生成有利于牙髓干细胞(DPSC)完全牙源性分化和快速诱导血管生成的合适微环境。因此,DPSC 的存活和随后的分化受到限制。由自组装肽(SAP)组成的细胞外基质(ECM)样仿生水凝胶被开发出来,为 DPSC 提供合适的微环境。为了实现功能性的 DPC 再生,最重要的考虑因素是提供一个有利于 DPSC 充分附着和再生牙髓快速血管化的环境。以生长因子(GFs)形式存在的形态发生信号已被纳入 SAP 中,以促进有生产力的 DPSC 行为。然而,GFs 的使用存在一些缺点。我们设想使用带有 SAP 的支架结合长期因子来增加 DPSC 的附着和血管化,以此来解决这一挑战。

方法

在这项研究中,我们开发了一种基于 SAP 的支架的合成材料,该支架带有 RGD 和血管内皮生长因子(VEGF)模拟肽表位,具有牙本质和牙髓再生的双重功能。DPSC 和人脐静脉内皮细胞(HUVEC)用于评估基于 SAP 的支架的生物学效应。此外,采用恒磨牙活髓切断模型测试基于 SAP 的支架的修复和再生效果。

结果

该支架同时呈现 RGD 和 VEGF 模拟肽表位,并为 DPSC 提供了 3D 微环境。在体外,在多功能化组中,在复合支架上生长的 DPSC 表现出显著提高的存活率以及血管生成和牙源性分化。部分活髓切断大鼠模型的组织学和功能评估表明,多功能化支架在刺激牙髓恢复和牙本质再生方面优于其他选择。

结论

基于我们在功能化 SAP 支架上获得的数据,生成了一种支持干细胞附着和血管生成的 3D 微环境,该支架在牙髓组织工程和再生方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b16/7495350/457737bb3e94/IJN-15-6631-g0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索