Chowdhury Ratul, Boorla Veda Sheersh, Maranas Costas D
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
Comput Struct Biotechnol J. 2020;18:2573-2582. doi: 10.1016/j.csbj.2020.09.019. Epub 2020 Sep 18.
SARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor - angiotensin converting enzyme (ACE2). We computationally contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domain (RBD) of the 2002 epidemic-causing SARS-CoV-1, SARS-CoV-2, and bat coronavirus RaTG13 using the Rosetta energy function. We find that the RBD of the spike protein of SARS-CoV-2 is highly optimized to achieve very strong binding with human ACE2 (hACE2) which is consistent with its enhanced infectivity. SARS-CoV-2 forms the most stable complex with hACE2 compared to SARS-CoV-1 (23% less stable) or RaTG13 (11% less stable). Notably, we calculate that the SARS-CoV-2 RBD lowers the binding strength of angiotensin 2 receptor type I (ATR1) which is the native binding partner of ACE2 by 44.2%. Strong binding is mediated through strong electrostatic attachments with every fourth residue on the N-terminus alpha-helix (starting from Ser19 to Asn53) as the turn of the helix makes these residues solvent accessible. By contrasting the spike protein SARS-CoV-2 Rosetta binding energy with ACE2 of different livestock and pet species we find strongest binding with bat ACE2 followed by human, feline, equine, canine and finally chicken. This is consistent with the hypothesis that bats are the viral origin and reservoir species. These results offer a computational explanation for the increased infection susceptibility by SARS-CoV-2 and allude to therapeutic modalities by identifying and rank-ordering the ACE2 residues involved in binding with the virus.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是一种新型高毒力病原体,它通过与细胞表面受体——血管紧张素转换酶(ACE2)结合进入人体细胞。我们使用Rosetta能量函数,通过计算对比了2002年引发疫情的严重急性呼吸综合征冠状病毒1(SARS-CoV-1)、SARS-CoV-2和蝙蝠冠状病毒RaTG13的人类ACE2与冠状病毒刺突蛋白受体结合域(RBD)之间的结合相互作用。我们发现,SARS-CoV-2刺突蛋白的RBD经过高度优化,可与人类ACE2(hACE2)实现非常强的结合,这与其增强的传染性相一致。与SARS-CoV-1(稳定性低23%)或RaTG13(稳定性低11%)相比,SARS-CoV-2与hACE2形成的复合物最稳定。值得注意的是,我们计算得出,SARS-CoV-2的RBD使ACE2的天然结合伴侣——血管紧张素2 I型受体(ATR1)的结合强度降低了44.2%。强结合是通过与N端α螺旋上每隔四个残基(从Ser19到Asn53)的强静电附着介导的,因为螺旋的转折使这些残基可接触溶剂。通过对比SARS-CoV-2刺突蛋白与不同家畜和宠物物种的ACE2的Rosetta结合能,我们发现与蝙蝠ACE2的结合最强,其次是人类、猫、马、犬,最后是鸡。这与蝙蝠是病毒起源和宿主物种的假设一致。这些结果为SARS-CoV-2感染易感性增加提供了一种计算解释,并通过识别和排列与病毒结合的ACE2残基暗示了治疗方式。