Department of Psychology, New York University, New York, NY, USA.
Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA.
Soc Cogn Affect Neurosci. 2021 Aug 5;16(8):827-837. doi: 10.1093/scan/nsaa127.
Across multiple domains of social perception-including social categorization, emotion perception, impression formation and mentalizing-multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has permitted a more detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social perception initially relied on broad structure-function associations derived from univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational relevance of different brain regions, and discuss how MVPA allows explicit tests of the correspondence between psychological models and the neural representation of social information. We also describe current and future advances in methodological approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception.
跨多个社会感知领域——包括社会分类、情绪感知、印象形成和心理理论——功能磁共振成像 (fMRI) 数据的多元模式分析 (MVPA) 允许更详细地了解大脑中如何处理和表示社会信息。与其他神经影像学领域一样,社会感知的神经科学研究最初依赖于从单变量 fMRI 分析中得出的广泛的结构-功能关联,以绘制涉及这些过程的神经区域图。在这篇综述中,我们追溯了使用 MVPA 的社会神经科学研究如何建立在这些神经解剖关联的基础上,以更好地描述不同大脑区域的计算相关性,并讨论 MVPA 如何允许对心理模型与社会信息的神经表示之间的对应关系进行明确测试。我们还描述了多元 fMRI 数据的方法学方法的当前和未来进展及其对社会感知神经科学的理论价值。