Kwon Oh In, Sajib Saurav Z K, Sersa Igor, Oh Tong In, Jeong Woo Chul, Kim Hyung Joong, Woo Eung Je
IEEE Trans Biomed Eng. 2016 Jan;63(1):168-75. doi: 10.1109/TBME.2015.2448555. Epub 2015 Jun 23.
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique for neuropsychiatric diseases and neurological disorders. In the tDCS treatment, dc current is injected into the head through a pair of electrodes attached on the scalp over a target region. A current density imaging method is needed to quantitatively visualize the internal current density distribution during the tDCS treatment.
We developed a novel current density image reconstruction algorithm using 1) a subject specific segmented 3-D head model, 2) diffusion tensor data, and 3) magnetic flux density data induced by the tDCS current. We acquired T1 weighted and diffusion tensor images of the head using the MRI scanner before the treatment. During the treatment, we can measure the induced magnetic flux density data using a magnetic resonance electrical impedance tomography (MREIT) pulse sequence. In this paper, the magnetic flux density data were numerically generated.
Numerical simulation results show that the proposed method successfully recovers the current density distribution including the effects of the anisotropic, as well as isotropic conductivity values of different tissues in the head.
The proposed current density imaging method using DT-MRI and MREIT can reliably recover cross-sectional images of the current density distribution during the tDCS treatment.
Success of the tDCS treatment depends on a precise determination of the induced current density distribution within different anatomical structures of the brain. Quantitative visualization of the current density distribution in the brain will play an important role in understanding the effects of the electrical stimulation.
经颅直流电刺激(tDCS)是一种用于治疗神经精神疾病和神经障碍的神经调节技术。在tDCS治疗中,直流电流通过附着在头皮目标区域上方的一对电极注入头部。需要一种电流密度成像方法来定量可视化tDCS治疗期间内部电流密度分布。
我们开发了一种新颖的电流密度图像重建算法,该算法使用1)特定受试者的分段三维头部模型,2)扩散张量数据,以及3)tDCS电流感应的磁通密度数据。在治疗前,我们使用MRI扫描仪获取头部的T1加权图像和扩散张量图像。在治疗过程中,我们可以使用磁共振电阻抗断层成像(MREIT)脉冲序列测量感应磁通密度数据。在本文中,磁通密度数据是通过数值生成的。
数值模拟结果表明,所提出的方法成功恢复了电流密度分布,包括头部不同组织的各向异性以及各向同性电导率值的影响。
所提出的使用DT-MRI和MREIT的电流密度成像方法能够可靠地恢复tDCS治疗期间电流密度分布的横截面图像。
tDCS治疗的成功取决于精确确定大脑不同解剖结构内感应电流密度分布。大脑中电流密度分布的定量可视化将在理解电刺激的效果方面发挥重要作用。