From the Departments of Diagnostic Imaging (M.T.S., M.J., J.L.B., G.L.B., R.A.M.), Diagnostic Imaging (A.D.Y.), and Neurosurgery (M.J., R.A.M.), Warren Alpert School of Medicine at Brown University, Rhode Island Hospital, 593 Eddy St, APC 701, Providence, RI 02903; Department of Computer Science, Brown University, Providence, RI (J.V., M.P.D., Y.H.K., S.S.S., H.J.T., A.W., H.L.C.W., C.E., U.C.); and the Norman Prince Neuroscience Institute, Rhode Island Hospital, Providence, RI (M.J., R.A.M.).
Radiology. 2020 Dec;297(3):640-649. doi: 10.1148/radiol.2020200334. Epub 2020 Sep 29.
Background Large vessel occlusion (LVO) stroke is one of the most time-sensitive diagnoses in medicine and requires emergent endovascular therapy to reduce morbidity and mortality. Leveraging recent advances in deep learning may facilitate rapid detection and reduce time to treatment. Purpose To develop a convolutional neural network to detect LVOs at multiphase CT angiography. Materials and Methods This multicenter retrospective study evaluated 540 adults with CT angiography examinations for suspected acute ischemic stroke from February 2017 to June 2018. Examinations positive for LVO ( = 270) were confirmed by catheter angiography and LVO-negative examinations ( = 270) were confirmed through review of clinical and radiology reports. Preprocessing of the CT angiography examinations included vasculature segmentation and the creation of maximum intensity projection images to emphasize the contrast agent-enhanced vasculature. Seven experiments were performed by using combinations of the three phases (arterial, phase 1; peak venous, phase 2; and late venous, phase 3) of the CT angiography. Model performance was evaluated on the held-out test set. Metrics included area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results The test set included 62 patients (mean age, 69.5 years; 48% women). Single-phase CT angiography achieved an AUC of 0.74 (95% confidence interval [CI]: 0.63, 0.85) with sensitivity of 77% (24 of 31; 95% CI: 59%, 89%) and specificity of 71% (22 of 31; 95% CI: 53%, 84%). Phases 1, 2, and 3 together achieved an AUC of 0.89 (95% CI: 0.81, 0.96), sensitivity of 100% (31 of 31; 95% CI: 99%, 100%), and specificity of 77% (24 of 31; 95% CI: 59%, 89%), a statistically significant improvement relative to single-phase CT angiography ( = .01). Likewise, phases 1 and 3 and phases 2 and 3 also demonstrated improved fit relative to single phase ( = .03). Conclusion This deep learning model was able to detect the presence of large vessel occlusion and its diagnostic performance was enhanced by using delayed phases at multiphase CT angiography examinations. © RSNA, 2020 See also the editorial by Ospel and Goyal in this issue.
背景 大血管闭塞(LVO)是医学中最需要及时诊断的病症之一,需要紧急血管内治疗以降低发病率和死亡率。利用深度学习的最新进展可能有助于快速检测和减少治疗时间。目的 开发一种用于多相 CT 血管造影的卷积神经网络来检测 LVO。材料和方法 这项多中心回顾性研究评估了 2017 年 2 月至 2018 年 6 月期间因疑似急性缺血性脑卒中而接受 CT 血管造影检查的 540 名成年人。通过导管血管造影证实 LVO 阳性(=270),通过临床和放射学报告回顾证实 LVO 阴性(=270)。CT 血管造影检查的预处理包括血管分割和最大密度投影图像的创建,以强调对比剂增强的血管。通过使用 CT 血管造影的三个阶段(动脉期、阶段 1;峰值静脉期、阶段 2;和晚期静脉期、阶段 3)的组合进行了七项实验。在保留的测试集中评估模型性能。指标包括受试者工作特征曲线下面积(AUC)、敏感性和特异性。结果 测试集包括 62 名患者(平均年龄 69.5 岁;48%为女性)。单相 CT 血管造影的 AUC 为 0.74(95%置信区间 [CI]:0.63,0.85),敏感性为 77%(24 例中有 31 例;95%CI:59%,89%),特异性为 71%(22 例中有 31 例;95%CI:53%,84%)。1、2 和 3 个阶段联合的 AUC 为 0.89(95%CI:0.81,0.96),敏感性为 100%(31 例中有 31 例;95%CI:99%,100%),特异性为 77%(31 例中有 24 例;95%CI:59%,89%),与单相 CT 血管造影相比有统计学意义(=0.01)。同样,单相 1 期和 3 期以及单相 2 期和 3 期也显示出比单相更好的拟合(=0.03)。结论 该深度学习模型能够检测到大血管闭塞的存在,并且使用多相 CT 血管造影检查中的延迟相可以提高其诊断性能。©RSNA,2020 也可参见本期 Ospel 和 Goyal 的社论。