Suppr超能文献

最小化优化数量以实现高效的群落动态通量平衡分析。

Minimizing the number of optimizations for efficient community dynamic flux balance analysis.

机构信息

Department of Surgery, Center for Individualized Medicine Microbiome Program, Mayo Clinic, Rochester, MN, USA.

出版信息

PLoS Comput Biol. 2020 Sep 29;16(9):e1007786. doi: 10.1371/journal.pcbi.1007786. eCollection 2020 Sep.

Abstract

Dynamic flux balance analysis uses a quasi-steady state assumption to calculate an organism's metabolic activity at each time-step of a dynamic simulation, using the well-known technique of flux balance analysis. For microbial communities, this calculation is especially costly and involves solving a linear constrained optimization problem for each member of the community at each time step. However, this is unnecessary and inefficient, as prior solutions can be used to inform future time steps. Here, we show that a basis for the space of internal fluxes can be chosen for each microbe in a community and this basis can be used to simulate forward by solving a relatively inexpensive system of linear equations at most time steps. We can use this solution as long as the resulting metabolic activity remains within the optimization problem's constraints (i.e. the solution to the linear system of equations remains a feasible to the linear program). As the solution becomes infeasible, it first becomes a feasible but degenerate solution to the optimization problem, and we can solve a different but related optimization problem to choose an appropriate basis to continue forward simulation. We demonstrate the efficiency and robustness of our method by comparing with currently used methods on a four species community, and show that our method requires at least 91% fewer optimizations to be solved. For reproducibility, we prototyped the method using Python. Source code is available at https://github.com/jdbrunner/surfin_fba.

摘要

动态通量平衡分析使用准稳态假设,在动态模拟的每个时间步计算生物体的代谢活性,使用通量平衡分析的知名技术。对于微生物群落,此计算特别昂贵,并且涉及在每个时间步对群落中的每个成员求解线性约束优化问题。然而,这是不必要和低效的,因为可以使用先前的解决方案来为未来的时间步骤提供信息。在这里,我们表明可以为群落中的每个微生物选择内部通量空间的基础,并且可以通过在大多数时间步求解相对便宜的线性方程组来向前模拟使用该基础。只要产生的代谢活性保持在线性规划问题的约束内(即线性方程组的解仍然是线性程序的可行解),我们就可以使用此解决方案。随着解决方案变得不可行,它首先成为优化问题的可行但退化的解决方案,我们可以求解不同但相关的优化问题以选择合适的基础来继续向前模拟。我们通过在一个四物种群落上与当前使用的方法进行比较来证明我们的方法的效率和鲁棒性,并表明我们的方法需要求解的优化问题至少少 91%。为了可重复性,我们使用 Python 原型化了该方法。源代码可在 https://github.com/jdbrunner/surfin_fba 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5da/7546477/ebb863793426/pcbi.1007786.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验