Suppr超能文献

基于双向长短期记忆和强化学习的事件检测的传感器调度占空比。

Scheduling Sensor Duty Cycling Based on Event Detection Using Bi-Directional Long Short-Term Memory and Reinforcement Learning.

机构信息

School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea.

出版信息

Sensors (Basel). 2020 Sep 25;20(19):5498. doi: 10.3390/s20195498.

Abstract

A smart home provides a facilitated environment for the detection of human activity with appropriate Deep Learning algorithms to manipulate data collected from numerous sensors attached to various smart things in a smart home environment. Human activities comprise expected and unexpected behavior events; therefore, detecting these events consisting of mutual dependent activities poses a key challenge in the activities detection paradigm. Besides, the battery-powered sensor ubiquitously and extensively monitors activities, disputes, and sensor energy depletion. Therefore, to address these challenges, we propose an Energy and Event Aware-Sensor Duty Cycling scheme. The proposed model predicts the future expected event using the Bi-Directional Long-Short Term Memory model and allocates Predictive Sensors to the predicted event. To detect the unexpected events, the proposed model localizes a Monitor Sensor within a cluster of Hibernate Sensors using the Jaccard Similarity Index. Finally, we optimize the performance of our proposed scheme by employing the Q-Learning algorithm to track the missed or undetected events. The simulation is executed against the conventional Machine Learning algorithms for the sensor duty cycle, scheduling to reduce the sensor energy consumption and improve the activity detection accuracy. The experimental evaluation of our proposed scheme shows significant improvement in activity detection accuracy from 94.12% to 96.12%. Besides, the effective rotation of the Monitor Sensor significantly improves the energy consumption of each sensor with the entire network lifetime.

摘要

智能家居利用适当的深度学习算法为人类活动检测提供便利的环境,以操纵从智能家居环境中连接到各种智能设备的众多传感器收集的数据。人类活动包括预期和意外的行为事件;因此,检测这些由相互依赖的活动组成的事件是活动检测范例中的一个关键挑战。此外,电池供电的传感器普遍且广泛地监测活动、争议和传感器能量消耗。因此,为了解决这些挑战,我们提出了一种能源和事件感知-传感器责任循环方案。所提出的模型使用双向长短期记忆模型预测未来的预期事件,并将预测传感器分配给预测事件。为了检测意外事件,所提出的模型使用杰卡德相似性指数在休眠传感器的簇中定位监控传感器。最后,我们通过使用 Q-学习算法来跟踪错过或未检测到的事件来优化我们提出的方案的性能。针对传感器责任循环的传统机器学习算法对我们提出的方案进行了模拟,以减少传感器的能量消耗并提高活动检测的准确性。我们提出的方案的实验评估表明,活动检测的准确性从 94.12%显著提高到 96.12%。此外,监控传感器的有效轮换显著提高了每个传感器的能量消耗和整个网络的生命周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a7d/7583935/1d6c50993878/sensors-20-05498-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验