Krishnasamy Lalitha, C Siva, Dhanaraj Rajesh Kumar, Al-Khasawneh Mahmoud Ahmad, Al-Shehari Taher, Alsadhan Nasser A, Selvarajan Shitharth
Department of Artificial Intelligence and Data Science, Nandha Engineering College, Erode, Tamil Nadu, India.
Department of Information Technology, Nandha Engineering College, Erode, Tamil Nadu, India.
Sci Rep. 2025 May 26;15(1):18423. doi: 10.1038/s41598-025-02933-9.
Traffic congestion forecasting is one of the major elements of the Intelligent Transportation Systems (ITS). Traffic congestion in urban road networks significantly influences sustainability by increasing air pollution levels. Efficient congestion management enables drivers to bypass heavily trafficked areas and reducing pollutant emissions. However, properly forecasting congestion spread remains challenging due to complex, dynamic, and non-linear nature of traffic patterns. The advent of Internet of Things (IoT) devices has introduced valuable datasets that can support the development of intelligent and sustainable transportation for modern cities. This work presents a Deep Learning (DL) approach of Reinforcement Learning (RL) based Bidirectional Long Short-Term Memory (BiLSTM) with Adaptive Secretary Bird Optimizer (ASBO) for traffic congestion prediction. The experimentation is evaluated on Traffic Prediction Dataset and achieved better Mean Square Error (MSE) and Mean Absolute Error (MAE) with results of 0.015 and 0.133 respectively. Compared to the existing algorithms like RL, Deep Q Learning (DQL), LSTM and BiLSTM, the RL - BiLSTM with ASBO outperformed with the parameters MSE, RMSE, R2, MAE and MAPE with 37%, 27.44%, 26%, 33.52% and 35.8% respectively. The better performance demonstrates that RL- BiLSTM with ASBO is well-suited to predict congestion patterns in road networks.
交通拥堵预测是智能交通系统(ITS)的主要要素之一。城市道路网络中的交通拥堵通过提高空气污染水平对可持续性产生重大影响。高效的拥堵管理使驾驶员能够避开交通繁忙的区域并减少污染物排放。然而,由于交通模式的复杂性、动态性和非线性,准确预测拥堵扩散仍然具有挑战性。物联网(IoT)设备的出现引入了有价值的数据集,这些数据集可以支持现代城市智能和可持续交通的发展。这项工作提出了一种基于强化学习(RL)的双向长短期记忆(BiLSTM)与自适应秘书鸟优化器(ASBO)的深度学习(DL)方法用于交通拥堵预测。实验在交通预测数据集上进行评估,分别以0.015和0.133的结果获得了更好的均方误差(MSE)和平均绝对误差(MAE)。与现有的算法如RL、深度Q学习(DQL)、长短期记忆网络(LSTM)和双向长短期记忆网络(BiLSTM)相比,带有ASBO的RL - BiLSTM在MSE、均方根误差(RMSE)、决定系数(R2)、MAE和平均绝对百分比误差(MAPE)参数方面分别以37%、27.44%、26%、33.52%和35.8%的优势胜出。更好的性能表明带有ASBO的RL - BiLSTM非常适合预测道路网络中的拥堵模式。