Suppr超能文献

使用可穿戴传感器、判别分析和基于长短期记忆的神经结构学习进行人体活动识别。

Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.

机构信息

SINTEF Digital, Oslo, Norway.

Norwegian University of Science and Technology - NTNU, Gjøvik, Norway.

出版信息

Sci Rep. 2021 Aug 12;11(1):16455. doi: 10.1038/s41598-021-95947-y.

Abstract

Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual's functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.

摘要

基于人体传感器数据的医疗保健因其良好的实际应用(如智能医疗保健系统)而引起了广泛研究人员的关注。例如,基于智能可穿戴传感器的行为识别系统可以观察智能老年护理环境中的老年人,以改善他们的生活方式,并通过警告即将发生的前所未有的事件(如跌倒或其他健康风险)来帮助他们,从而延长他们的独立生活。虽然有许多使用有区别的传感器来观察人们行为的方法,但可穿戴传感器在这方面大多提供可靠的数据,以监测个人的功能和生活方式。在本文中,我们提出了一种基于身体传感器的活动建模和识别系统,该系统使用基于时间序列信息的深度神经结构学习(NSL),这是一种很有前途的深度学习算法。首先,我们从多个可穿戴传感器中获取数据,同时让受试者进行几项日常活动。一旦收集到数据,时间序列信息就会经过一些统计特征处理。此外,核判别分析(KDA)应用于通过最小化类内散射来观察不同活动类别的特征更好的聚类,同时最大化样本的类间散射。然后将稳健的时间序列特征与基于长短期记忆(LSTM)的神经结构学习(NSL)一起应用于活动建模。该方法在一个公共数据集上实现了约 99%的召回率。它还与现有的不同传统机器学习方法(如典型的深度置信网络(DBN)、卷积神经网络(CNN)和递归神经网络(RNN))进行了比较,它们的最大召回率为 94%。此外,还使用了快速有效的可解释人工智能(XAI)算法,局部可解释模型不可知解释(LIME)来解释和检查机器学习决策。稳健的活动识别系统可以用于理解人们在不同环境(如家庭、诊所和办公室)中的日常生活行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f431/8361103/b99abb5fdf04/41598_2021_95947_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验