The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, China.
Integr Biol (Camb). 2020 Oct 16;12(10):241-249. doi: 10.1093/intbio/zyaa018.
Current microfluidic methods for studying multicell strains (e.g., m-types) with multienvironments (e.g., n-types) require large numbers of inlets/outlets (m*n), a complicated procedure or expensive machinery. Here, we developed a novel two-layer-integrated method to combine different PDMS microchannel layers with different functions into one chip by a PDMS through-hole array, which improved the design of a PDMS-based microfluidic system. Using this method, we succeeded in converting 2 × m × n inlets/outlets into m + n inlets/outlets and reduced the time cost of loading processing (from m × n to m) of the device for studying multicell strains (e.g., m-types) in varied multitemporal environments (i.e., n-types). Using this device, the dynamic behavior of the cell-stress-response proteins was studied when the glucose concentration decreased from 2% to a series of lower concentrations. Our device could also be widely used in high-throughput studies of various stress responses, and the new concept of a multilayer-integrated fabrication method could greatly improve the design of PDMS-based microfluidic systems.
目前用于研究多细胞株(例如 m 型)与多环境(例如 n 型)的微流控方法需要大量的入口/出口(m*n),操作过程复杂或需要昂贵的设备。在这里,我们开发了一种新颖的两层集成方法,通过 PDMS 通孔阵列将具有不同功能的不同 PDMS 微流道层组合到一个芯片上,从而改进了基于 PDMS 的微流控系统的设计。使用这种方法,我们成功地将 2×m×n 个入口/出口转换为 m+n 个入口/出口,并减少了用于研究不同时间环境(即 n 型)中多细胞株(例如 m 型)的设备的加载处理的时间成本(从 m×n 减少到 m)。使用该设备,研究了葡萄糖浓度从 2%降低到一系列较低浓度时细胞应激反应蛋白的动态行为。我们的设备还可以广泛用于各种应激反应的高通量研究,并且多层集成制造方法的新概念可以极大地改进基于 PDMS 的微流控系统的设计。