Department of Mechanical Engineering, University of Melbourne, Melbourne, 3010, VIC, Australia.
School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, 3010, VIC, Australia.
Sci Rep. 2024 Jun 12;14(1):13558. doi: 10.1038/s41598-024-63511-z.
Longitudinal studies that continuously generate data enable the capture of temporal variations in experimentally observed parameters, facilitating the interpretation of results in a time-aware manner. We propose IL-VIS (incrementally learned visualizer), a new machine learning pipeline that incrementally learns and visualizes a progression trajectory representing the longitudinal changes in longitudinal studies. At each sampling time point in an experiment, IL-VIS generates a snapshot of the longitudinal process on the data observed thus far, a new feature that is beyond the reach of classical static models. We first verify the utility and correctness of IL-VIS using simulated data, for which the true progression trajectories are known. We find that it accurately captures and visualizes the trends and (dis)similarities between high-dimensional progression trajectories. We then apply IL-VIS to longitudinal multi-electrode array data from brain cortical organoids when exposed to different levels of quinolinic acid, a metabolite contributing to many neuroinflammatory diseases including Alzheimer's disease, and its blocking antibody. We uncover valuable insights into the organoids' electrophysiological maturation and response patterns over time under these conditions.
纵向研究不断生成数据,能够捕捉实验观测参数的时间变化,有助于以时间感知的方式解释结果。我们提出了 IL-VIS(增量学习可视化器),这是一个新的机器学习管道,能够增量学习和可视化表示纵向研究中纵向变化的进展轨迹。在实验的每个采样时间点,IL-VIS 根据迄今为止观察到的数据生成纵向过程的快照,这是经典静态模型无法企及的新特征。我们首先使用已知真实进展轨迹的模拟数据验证了 IL-VIS 的实用性和正确性。我们发现它能够准确地捕捉和可视化高维进展轨迹之间的趋势和(不)相似性。然后,我们将 IL-VIS 应用于脑皮质类器官在不同水平喹啉酸(一种导致包括阿尔茨海默病在内的许多神经炎症性疾病的代谢物)及其阻断抗体暴露下的纵向多电极阵列数据。我们揭示了在这些条件下,类器官的电生理成熟和响应模式随时间的宝贵见解。