Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
Physiol Rev. 2021 Jul 1;101(3):1309-1370. doi: 10.1152/physrev.00047.2019. Epub 2020 Oct 1.
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
转录后基因表达包括剪接、RNA 转运、翻译和 RNA 降解,为许多(如果不是全部的话)分子途径提供了一个重要的调控层。在过去的几十年里,研究已经将 RNA 结合蛋白(RBPs)置于转录后基因调控的中心。在这里,我们提出了 RBP 相互依赖的网络,以调节中枢神经系统(CNS)内的复杂途径。这些途径涉及神经元发育和功能的多个方面,包括高级认知。因此,仅仅揭示单个 RBP 的单独贡献及其后果是不够的,而是要研究和理解不同 RBP 之间的紧密相互作用。在这篇综述中,我们总结了 RBP 生物学领域的最新发现,并讨论了不同 RBP 之间的复杂相互作用。其次,我们强调了 RBP 网络内部的潜在动态,以及这如何调节神经发生、突触传递和突触可塑性等关键过程。重要的是,我们设想特定 RBP 的功能障碍可能会导致 RBP 网络内的紊乱。这将对 mRNA 结合和翻译控制产生直接和间接(补偿性)影响,导致细胞表达程序的整体变化,特别是突触可塑性。因此,我们专注于 RBP 功能障碍以及它如何导致神经精神和神经退行性疾病。基于最近的发现,我们提出整个调节性 RBP 网络的改变可能是导致包括神经退行性变、癫痫和自闭症谱系障碍在内的复杂疾病中观察到的表型功能障碍的原因。