Suppr超能文献

YouTube 视频评论中的健康饮食:描述性和预测性分析。

YouTube Video Comments on Healthy Eating: Descriptive and Predictive Analysis.

机构信息

Faculty of Business and Law, Taylor's University, Subang Jaya, Malaysia.

School of Computer Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia.

出版信息

JMIR Public Health Surveill. 2020 Oct 1;6(4):e19618. doi: 10.2196/19618.

Abstract

BACKGROUND

Poor nutrition and food selection lead to health issues such as obesity, cardiovascular disease, diabetes, and cancer. This study of YouTube comments aims to uncover patterns of food choices and the factors driving them, in addition to exploring the sentiments of healthy eating in networked communities.

OBJECTIVE

The objectives of the study are to explore the determinants, motives, and barriers to healthy eating behaviors in online communities and provide insight into YouTube video commenters' perceptions and sentiments of healthy eating through text mining techniques.

METHODS

This paper applied text mining techniques to identify and categorize meaningful healthy eating determinants. These determinants were then incorporated into hypothetically defined constructs that reflect their thematic and sentimental nature in order to test our proposed model using a variance-based structural equation modeling procedure.

RESULTS

With a dataset of 4654 comments extracted from YouTube videos in the context of Malaysia, we apply a text mining method to analyze the perceptions and behavior of healthy eating. There were 10 clusters identified with regard to food ingredients, food price, food choice, food portion, well-being, cooking, and culture in the concept of healthy eating. The structural equation modeling results show that clusters are positively associated with healthy eating with all P values less than .001, indicating a statistical significance of the study results. People hold complex and multifaceted beliefs about healthy eating in the context of YouTube videos. Fruits and vegetables are the epitome of healthy foods. Despite having a favorable perception of healthy eating, people may not purchase commonly recognized healthy food if it has a premium price. People associate healthy eating with weight concerns. Food taste, variety, and availability are identified as reasons why Malaysians cannot act on eating healthily.

CONCLUSIONS

This study offers significant value to the existing literature of health-related studies by investigating the rich and diverse social media data gleaned from YouTube. This research integrated text mining analytics with predictive modeling techniques to identify thematic constructs and analyze the sentiments of healthy eating.

摘要

背景

不良的营养和食物选择会导致健康问题,如肥胖、心血管疾病、糖尿病和癌症。本研究旨在通过对 YouTube 评论的分析,揭示人们选择食物的模式以及影响这些模式的因素,同时探讨网络社区中健康饮食的态度。

目的

本研究旨在探索在线社区中健康饮食行为的决定因素、动机和障碍,并通过文本挖掘技术深入了解 YouTube 视频评论者对健康饮食的看法和感受。

方法

本文应用文本挖掘技术来识别和分类有意义的健康饮食决定因素。然后,将这些决定因素纳入假设定义的构建中,以反映其主题和情感性质,以便使用基于方差的结构方程建模程序来测试我们提出的模型。

结果

通过从马来西亚 YouTube 视频中提取的 4654 条评论数据集,我们应用文本挖掘方法分析健康饮食的看法和行为。在健康饮食的概念中,确定了与食物成分、食品价格、食物选择、食物份量、幸福感、烹饪和文化有关的 10 个聚类。结构方程模型的结果表明,聚类与健康饮食呈正相关,所有 P 值均小于.001,表明研究结果具有统计学意义。人们在观看 YouTube 视频时对健康饮食持有复杂而多方面的信念。水果和蔬菜是健康食品的代表。尽管人们对健康饮食有正面的看法,但如果价格较高,人们可能不会购买通常被认为是健康的食品。人们将健康饮食与体重问题联系在一起。食物的味道、种类和可获得性被认为是马来西亚人无法健康饮食的原因。

结论

本研究通过调查从 YouTube 收集的丰富多样的社交媒体数据,为健康相关研究的现有文献提供了重要价值。本研究将文本挖掘分析与预测建模技术相结合,以识别主题构建并分析健康饮食的态度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7cd/7563625/fefc28a9a067/publichealth_v6i4e19618_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验