Suppr超能文献

考虑细胞异质性和缺失值先前表达来推断单细胞 RNA-seq 数据。

Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts.

机构信息

NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Mol Cell Biol. 2021 Apr 10;13(1):29-40. doi: 10.1093/jmcb/mjaa052.

Abstract

Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to determine expression patterns of thousands of individual cells. However, the analysis of scRNA-seq data remains a computational challenge due to the high technical noise such as the presence of dropout events that lead to a large proportion of zeros for expressed genes. Taking into account the cell heterogeneity and the relationship between dropout rate and expected expression level, we present a cell sub-population based bounded low-rank (PBLR) method to impute the dropouts of scRNA-seq data. Through application to both simulated and real scRNA-seq datasets, PBLR is shown to be effective in recovering dropout events, and it can dramatically improve the low-dimensional representation and the recovery of gene‒gene relationships masked by dropout events compared to several state-of-the-art methods. Moreover, PBLR also detects accurate and robust cell sub-populations automatically, shedding light on its flexibility and generality for scRNA-seq data analysis.

摘要

单细胞 RNA 测序 (scRNA-seq) 提供了一种强大的工具,可以确定数千个单个细胞的表达模式。然而,由于技术噪声高,如存在缺失事件,导致表达基因的大量零值,因此 scRNA-seq 数据的分析仍然是一个计算挑战。考虑到细胞异质性以及缺失率和预期表达水平之间的关系,我们提出了一种基于细胞亚群的有界低秩 (PBLR) 方法来推断 scRNA-seq 数据的缺失值。通过对模拟和真实 scRNA-seq 数据集的应用,PBLR 被证明在恢复缺失事件方面非常有效,与几种最先进的方法相比,它可以显著改善由缺失事件掩盖的低维表示和基因-基因关系的恢复。此外,PBLR 还可以自动检测准确和稳健的细胞亚群,这表明它在 scRNA-seq 数据分析方面具有灵活性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe8/8035992/ebf630ed37ce/mjaa052f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验