Suppr超能文献

基因组风险评分对系统性硬化症易感性的影响。

Genomic Risk Score impact on susceptibility to systemic sclerosis.

机构信息

Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Andalucía, Spain

Instituto de Parasitologia y Biomedicina Lopez-Neyra, Granada, Andalucía, Spain.

出版信息

Ann Rheum Dis. 2021 Jan;80(1):118-127. doi: 10.1136/annrheumdis-2020-218558. Epub 2020 Oct 1.

Abstract

OBJECTIVES

Genomic Risk Scores (GRS) successfully demonstrated the ability of genetics to identify those individuals at high risk for complex traits including immune-mediated inflammatory diseases (IMIDs). We aimed to test the performance of GRS in the prediction of risk for systemic sclerosis (SSc) for the first time.

METHODS

Allelic effects were obtained from the largest SSc Genome-Wide Association Study (GWAS) to date (9 095 SSc and 17 584 healthy controls with European ancestry). The best-fitting GRS was identified under the additive model in an independent cohort that comprised 400 patients with SSc and 571 controls. Additionally, GRS for clinical subtypes (limited cutaneous SSc and diffuse cutaneous SSc) and serological subtypes (anti-topoisomerase positive (ATA+) and anti-centromere positive (ACA+)) were generated. We combined the estimated GRS with demographic and immunological parameters in a multivariate generalised linear model.

RESULTS

The best-fitting SSc GRS included 33 single nucleotide polymorphisms (SNPs) and discriminated between patients with SSc and controls (area under the receiver operating characteristic (ROC) curve (AUC)=0.673). Moreover, the GRS differentiated between SSc and other IMIDs, such as rheumatoid arthritis and Sjögren's syndrome. Finally, the combination of GRS with age and immune cell counts significantly increased the performance of the model (AUC=0.787). While the SSc GRS was not able to discriminate between ATA+ and ACA+ patients (AUC<0.5), the serological subtype GRS, which was based on the allelic effects observed for the comparison between ACA+ and ATA+ patients, reached an AUC=0.693.

CONCLUSIONS

GRS was successfully implemented in SSc. The model discriminated between patients with SSc and controls or other IMIDs, confirming the potential of GRS to support early and differential diagnosis for SSc.

摘要

目的

基因组风险评分(GRS)成功证明了遗传学能够识别那些具有复杂特征(包括免疫介导的炎症性疾病(IMIDs))高风险的个体。我们旨在首次测试 GRS 在预测系统性硬化症(SSc)风险中的性能。

方法

从迄今为止最大的 SSc 全基因组关联研究(GWAS)中获得等位基因效应(9095 例 SSc 和 17584 例具有欧洲血统的健康对照)。在一个包含 400 例 SSc 患者和 571 例对照的独立队列中,根据加性模型确定了最佳拟合的 GRS。此外,还生成了临床亚型(局限性皮肤 SSc 和弥漫性皮肤 SSc)和血清亚型(抗拓扑异构酶阳性(ATA+)和抗着丝粒阳性(ACA+))的 GRS。我们将估计的 GRS 与多元广义线性模型中的人口统计学和免疫学参数相结合。

结果

最佳拟合的 SSc GRS 包括 33 个单核苷酸多态性(SNP),可区分 SSc 患者和对照者(接受者操作特征(ROC)曲线下面积(AUC)=0.673)。此外,GRS 可区分 SSc 和其他 IMIDs,如类风湿关节炎和干燥综合征。最后,GRS 与年龄和免疫细胞计数的结合显着提高了模型的性能(AUC=0.787)。虽然 SSc GRS 无法区分 ATA+和 ACA+患者(AUC<0.5),但基于比较 ACA+和 ATA+患者观察到的等位基因效应的血清亚型 GRS 达到 AUC=0.693。

结论

GRS 已成功应用于 SSc。该模型可区分 SSc 患者和对照者或其他 IMIDs,证实了 GRS 支持 SSc 的早期和鉴别诊断的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验