Suppr超能文献

机器学习预测扩张型心肌病的区域性左心室多参数应变。

Machine Learning Outcome Prediction in Dilated Cardiomyopathy Using Regional Left Ventricular Multiparametric Strain.

机构信息

Department of Surgery, Division of Cardiothoracic Surgery, Barnes-Jewish Hospital, Washington University School of Medicine, Campus Box 8234, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.

Institute for Informatics, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Ann Biomed Eng. 2021 Feb;49(2):922-932. doi: 10.1007/s10439-020-02639-1. Epub 2020 Oct 1.

Abstract

The clinical presentation of idiopathic dilated cardiomyopathy (IDCM) heart failure (HF) patients who will respond to medical therapy (responders) and those who will not (non-responders) is often similar. A machine learning (ML)-based clinical tool to identify responders would prevent unnecessary surgery, while targeting non-responders for early intervention. We used regional left ventricular (LV) contractile injury patterns in ML models to identify IDCM HF non-responders. MRI-based multiparametric strain analysis was performed in 178 test subjects (140 normal subjects and 38 IDCM patients), calculating longitudinal, circumferential, and radial strain over 18 LV sub-regions for inclusion in ML analyses. Patients were identified as responders based upon symptomatic and contractile improvement on medical therapy. We tested the predictive accuracy of support vector machines (SVM), logistic regression (LR), random forest (RF), and deep neural networks (DNN). The DNN model outperformed other models, predicting response to medical therapy with an area under the receiver operating characteristic curve (AUC) of 0.94. The top features were longitudinal strain in (1) basal: anterior, posterolateral and (2) mid: posterior, anterolateral, and anteroseptal sub-regions. Regional contractile injury patterns predict response to medical therapy in IDCM HF patients, and have potential application in ML-based HF patient care.

摘要

特发性扩张型心肌病(IDCM)心力衰竭(HF)患者的临床表现,对于那些对药物治疗有反应( responders )和那些没有反应( non-responders )的患者往往相似。一种基于机器学习(ML)的临床工具,可识别出 responders ,将避免不必要的手术,同时针对 non-responders 进行早期干预。我们使用区域性左心室(LV)收缩损伤模式,在 ML 模型中识别 IDCM HF 非 responders 。对 178 名受试者(140 名正常受试者和 38 名 IDCM 患者)进行了基于 MRI 的多参数应变分析,计算了 18 个 LV 亚区的纵向、周向和径向应变,以纳入 ML 分析。根据药物治疗后症状和收缩功能的改善,将患者确定为 responders 。我们测试了支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)和深度神经网络(DNN)的预测准确性。DNN 模型的表现优于其他模型,其预测药物治疗反应的接收者操作特征曲线(ROC)下面积(AUC)为 0.94 。最重要的特征是基底:前壁、侧壁和中部:后壁、前壁和前间隔区域的纵向应变。区域性收缩损伤模式可预测 IDCM HF 患者对药物治疗的反应,在基于 ML 的 HF 患者护理中具有潜在应用。

相似文献

引用本文的文献

1
4
Primer on Machine Learning in Electrophysiology.电生理学中的机器学习入门
Arrhythm Electrophysiol Rev. 2023 Mar 28;12:e06. doi: 10.15420/aer.2022.43. eCollection 2023.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验