Suppr超能文献

利用心电图数据和深度神经网络检测心肌瘢痕。

Detecting myocardial scar using electrocardiogram data and deep neural networks.

机构信息

Cognitive Information Systems, KITE-Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen - University of Applied Sciences, 61169 Friedberg, Germany.

Department of Internal Medicine I, Cardiology, Justus-Liebig-University Gießen, 35390 Gießen, Germany.

出版信息

Biol Chem. 2020 Oct 2;402(8):911-923. doi: 10.1515/hsz-2020-0169. Print 2021 Jul 27.

Abstract

Ischaemic heart disease is among the most frequent causes of death. Early detection of myocardial pathologies can increase the benefit of therapy and reduce the number of lethal cases. Presence of myocardial scar is an indicator for developing ischaemic heart disease and can be detected with high diagnostic precision by magnetic resonance imaging. However, magnetic resonance imaging scanners are expensive and of limited availability. It is known that presence of myocardial scar has an impact on the well-established, reasonably low cost, and almost ubiquitously available electrocardiogram. However, this impact is non-specific and often hard to detect by a physician. We present an artificial intelligence based approach - namely a deep learning model - for the prediction of myocardial scar based on an electrocardiogram and additional clinical parameters. The model was trained and evaluated by applying 6-fold cross-validation to a dataset of 12-lead electrocardiogram time series together with clinical parameters. The proposed model for predicting the presence of scar tissue achieved an area under the curve score, sensitivity, specificity, and accuracy of 0.89, 70.0, 84.3, and 78.0%, respectively. This promisingly high diagnostic precision of our electrocardiogram-based deep learning models for myocardial scar detection may support a novel, comprehensible screening method.

摘要

缺血性心脏病是最常见的死亡原因之一。早期发现心肌病变可以提高治疗效果,减少致死病例的数量。心肌瘢痕的存在是发生缺血性心脏病的一个指标,可以通过磁共振成像以较高的诊断精度检测到。然而,磁共振成像扫描仪价格昂贵,且可用性有限。已知心肌瘢痕的存在对已确立的、成本合理且几乎无处不在的心电图有影响。然而,这种影响是非特异性的,且通常很难被医生察觉。我们提出了一种基于人工智能的方法——即深度学习模型——用于根据心电图和其他临床参数预测心肌瘢痕。该模型通过对 12 导联心电图时间序列和临床参数进行 6 折交叉验证进行训练和评估。该模型预测存在瘢痕组织的曲线下面积评分为 0.89,敏感性、特异性和准确性分别为 70.0%、84.3%和 78.0%。我们的基于心电图的深度学习模型对心肌瘢痕检测具有如此高的诊断精度,这可能支持一种新的、可理解的筛查方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验