Suppr超能文献

研究利用卷积神经网络分类和单匹配来提高心脏磁共振成像中用于心肌瘢痕诊断的可解释性和性能的方法。

Investigating methods to enhance interpretability and performance in cardiac MRI for myocardial scarring diagnosis using convolutional neural network classification and One Match.

作者信息

Udin Michael H, Armstrong Sara, Kai Alice, Doyle Scott T, Pokharel Saraswati, Ionita Ciprian N, Sharma Umesh C

机构信息

Department of Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.

Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America.

出版信息

PLoS One. 2025 Jun 9;20(6):e0313971. doi: 10.1371/journal.pone.0313971. eCollection 2025.

Abstract

Machine learning (ML) classification of myocardial scarring in cardiac MRI is often hindered by limited explainability, particularly with convolutional neural networks (CNNs). To address this, we developed One Match (OM), an algorithm that builds on template matching to improve on both the explainability and performance of ML myocardial scaring classification. By incorporating OM, we aim to foster trust in AI models for medical diagnostics and demonstrate that improved interpretability does not have to compromise classification accuracy. Using a cardiac MRI dataset from 279 patients, this study evaluates One Match, which classifies myocardial scarring in images by matching each image to a set of labeled template images. It uses the highest correlation score from these matches for classification and is compared to a traditional sequential CNN. Enhancements such as autodidactic enhancement (AE) and patient-level classifications (PLCs) were applied to improve the predictive accuracy of both methods. Results are reported as follows: accuracy, sensitivity, specificity, precision, and F1-score. The highest classification performance was observed with the OM algorithm when enhanced by both AE and PLCs, 95.3% accuracy, 92.3% sensitivity, 96.7% specificity, 92.3% precision, and 92.3% F1-score, marking a significant improvement over the base configurations. AE alone had a positive impact on OM increasing accuracy from 89.0% to 93.2%, but decreased the accuracy of the CNN from 85.3% to 82.9%. In contrast, PLCs improved accuracy for both the CNN and OM, raising the CNN's accuracy by 4.2% and OM's by 7.4%. This study demonstrates the effectiveness of OM in classifying myocardial scars, particularly when enhanced with AE and PLCs. The interpretability of OM also enabled the examination of misclassifications, providing insights that could accelerate development and foster greater trust among clinical stakeholders.

摘要

机器学习(ML)在心脏磁共振成像(MRI)中对心肌瘢痕进行分类时,往往受到可解释性有限的阻碍,尤其是在使用卷积神经网络(CNN)时。为了解决这个问题,我们开发了一种名为“一匹配”(OM)的算法,该算法基于模板匹配构建,旨在提高ML心肌瘢痕分类的可解释性和性能。通过整合OM,我们旨在增强对用于医学诊断的人工智能模型的信任,并证明提高可解释性不一定会损害分类准确性。本研究使用来自279名患者的心脏MRI数据集,评估了“一匹配”算法,该算法通过将每幅图像与一组带标签的模板图像进行匹配来对图像中的心肌瘢痕进行分类。它使用这些匹配中最高的相关分数进行分类,并与传统的顺序CNN进行比较。应用了诸如自学习增强(AE)和患者水平分类(PLC)等增强方法,以提高两种方法的预测准确性。结果报告如下:准确率、灵敏度、特异性、精确率和F1分数。当同时使用AE和PLC进行增强时,OM算法的分类性能最高,准确率为95.3%,灵敏度为92.3%,特异性为96.7%,精确率为92.3%,F1分数为92.3%,与基础配置相比有显著提高。单独使用AE对OM有积极影响,将准确率从89.0%提高到93.2%,但将CNN的准确率从85.3%降低到82.9%。相比之下,PLC提高了CNN和OM的准确率,将CNN的准确率提高了4.2%,将OM的准确率提高了7.4%。本研究证明了OM在心肌瘢痕分类中的有效性,特别是在通过AE和PLC进行增强时。OM的可解释性还使得能够检查错误分类,提供有助于加速开发并在临床利益相关者之间建立更大信任的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验