Suppr超能文献

载零价铁纳米颗粒的纳米纤维支架用于神经组织工程。

Zero-valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering.

机构信息

Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey.

Department of Regenerative Medicine, Institute of Health Sciences, Isparta, Turkey.

出版信息

J Tissue Eng Regen Med. 2020 Dec;14(12):1815-1826. doi: 10.1002/term.3137. Epub 2020 Oct 11.

Abstract

Regeneration of nerve tissue is a challenging issue in regenerative medicine. Especially, the peripheral nerve defects related to the accidents are one of the leading health problems. For large degeneration of peripheral nerve, nerve grafts are used in order to obtain a connection. These grafts should be biodegradable to prevent second surgical intervention. In order to make more effective nerve tissue engineering materials, nanotechnological improvements were used. Especially, the addition of electrically conductive and biocompatible metallic particles and carbon structures has essential roles in the stimulation of nerves. However, the metabolizing of these structures remains to wonder because of their nondegradable nature. In this study, biodegradable and conductive nerve tissue engineering materials containing zero-valent iron (Fe) nanoparticles were developed and investigated under in vitro conditions. By using electrospinning technique, fibrous mats composed of electrospun poly(ε-caprolactone) (PCL) nanofibers and Fe nanoparticles were obtained. Both electrical conductivity and mechanical properties increased compared with control group that does not contain nanoparticles. Conductivity of PCL/Fe5 and PCL/Fe10 increased to 0.0041 and 0.0152 from 0.0013 Scm , respectively. Cytotoxicity results indicated toxicity for composite mat containing 20% Fe nanoparticles (PCL/Fe20). SH-SY5Y cells were grown on PCL/Fe10 best, which contains 10% Fe nanoparticles. Beta III tubulin staining of dorsal root ganglion neurons seeded on mats revealed higher cell number on PCL/Fe10. This study demonstrated the impact of zero-valent Fe nanoparticles on nerve regeneration. The results showed the efficacy of the conductive nanoparticles, and the amount in the composition has essential roles in the promotion of the neurites.

摘要

组织再生是再生医学中的一个挑战性问题。特别是,与事故相关的外周神经缺损是主要健康问题之一。对于大的周围神经退变,使用神经移植物来获得连接。为了获得更好的神经组织工程材料,使用了纳米技术改进。特别是,添加导电和生物相容的金属颗粒和碳结构对于神经刺激起着重要作用。然而,由于其不可降解的性质,这些结构的代谢仍然是个问题。在这项研究中,开发了含有零价铁(Fe)纳米颗粒的可生物降解和导电神经组织工程材料,并在体外条件下进行了研究。通过使用静电纺丝技术,获得了由静电纺丝聚己内酯(PCL)纳米纤维和 Fe 纳米颗粒组成的纤维垫。与不含有纳米颗粒的对照组相比,电导率和机械性能都有所提高。PCL/Fe5 和 PCL/Fe10 的电导率分别从 0.0013 Scm 增加到 0.0041 和 0.0152。细胞毒性结果表明,含有 20%Fe 纳米颗粒的复合垫(PCL/Fe20)具有毒性。PCL/Fe10 最适合 SH-SY5Y 细胞生长,其中含有 10%Fe 纳米颗粒。在垫上接种背根神经节神经元的β III 微管蛋白染色显示,PCL/Fe10 上的细胞数量更多。这项研究证明了零价 Fe 纳米颗粒对神经再生的影响。结果表明了导电纳米颗粒的功效,而且在组成中的含量在促进神经突生长方面起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验