College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China.
College of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China.
Bioresour Technol. 2021 Jan;319:124159. doi: 10.1016/j.biortech.2020.124159. Epub 2020 Sep 24.
The intrinsic recalcitrance of lignocellulosic biomass makes it resistant to enzymatic hydrolysis. The electron-rich surface of the lignin and cellulose-alike structure of hemicellulose competitively absorb the cellulase. Thus, modifying the surface charge on biomass components to alter cellulase affinity is an urgent requisite. Developing charge tunable cellulase will alter substrate affinity. Also, charge-based immobilization generates controllable substrate affinity. Within immobilized cellulase involved in situ biomass saccharification, charge effects made a crucial contribution. In addition to affecting the interaction between immobilized cellulase and biomass, charge exerts an impact on cellulase to immobilize the materials, further investigation is essential. This study aims to review the charge effects on the cellulase affinity in biomass saccharification, strategies of charge tunable cellulase, and immobilized cellulase, thereby explaining the role of electrostatic interaction. In terms of electrostatic behavior, the pathways and plans to improve in situ biomass saccharification seem to be promising.
木质纤维素生物质的内在顽固性使其抵抗酶解。木质素的富电子表面和半纤维素的纤维素类似结构竞争性地吸附纤维素酶。因此,改变生物质成分的表面电荷以改变纤维素酶的亲和力是当务之急。开发电荷可调的纤维素酶将改变底物亲和力。此外,基于电荷的固定化产生可控的底物亲和力。在涉及原位生物质糖化的固定化纤维素酶中,电荷效应做出了至关重要的贡献。除了影响固定化纤维素酶与生物质之间的相互作用外,电荷还会影响纤维素酶固定化材料,因此需要进一步研究。本研究旨在综述电荷效应对生物质糖化中纤维素酶亲和力的影响、电荷可调纤维素酶和固定化纤维素酶的策略,从而解释静电相互作用的作用。就静电行为而言,改善原位生物质糖化的途径和计划似乎很有前景。