Suppr超能文献

用于识别住院的 2 型糖尿病成人患者中持续不良血糖风险的临床预测工具。

Clinical Prediction Tool To Identify Adults With Type 2 Diabetes at Risk for Persistent Adverse Glycemia in Hospital.

机构信息

Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne and Royal Melbourne Hospital, Parkville, Victoria, Australia.

Department of Medicine, University of Melbourne and Royal Melbourne Hospital, Parkville, Victoria, Australia; Australian Catholic University, Fitzroy, Victoria, Australia.

出版信息

Can J Diabetes. 2021 Mar;45(2):114-121.e3. doi: 10.1016/j.jcjd.2020.06.006. Epub 2020 Jun 10.

Abstract

OBJECTIVES

Given the high incidence of hyperglycemia and hypoglycemia in hospital and the lack of prediction tools for this problem, we developed a clinical tool to assist early identification of individuals at risk for persistent adverse glycemia (AG) in hospital.

METHODS

We analyzed a cohort of 594 consecutive adult inpatients with type 2 diabetes. We identified clinical factors available early in the admission course that were associated with persistent AG (defined as ≥2 days with capillary glucose <4 or >15 mmol/L during admission). A prediction model for persistent AG was constructed using logistic regression and internal validation was performed using a split-sample approach.

RESULTS

Persistent AG occurred in 153 (26%) of inpatients, and was associated with admission dysglycemia (odds ratio [OR], 3.65), glycated hemoglobin ≥8.1% (OR, 5.08), glucose-lowering treatment regimen containing sulfonylurea (OR, 3.50) or insulin (OR, 4.22), glucocorticoid medication treatment (OR, 2.27), Charlson Comorbidity Index score and the number of observed days. An early-identification prediction tool, based on clinical factors reliably available at admission (admission dysglycemia, glycated hemoglobin, glucose-lowering regimen and glucocorticoid treatment), could accurately predict persistent AG (receiver-operating characteristic area under curve = 0.806), and, at the optimal cutoff, the sensitivity, specificity and positive predictive value were 84%, 66% and 53%, respectively.

CONCLUSIONS

A clinical prediction tool based on clinical risk factors available at admission to hospital identified patients at increased risk for persistent AG and could assist early targeted management by inpatient diabetes teams.

摘要

目的

鉴于医院中高血糖和低血糖的发生率以及缺乏对此问题的预测工具,我们开发了一种临床工具,以协助早期识别医院中持续不良血糖(AG)风险较高的个体。

方法

我们分析了 594 例连续的 2 型糖尿病成年住院患者队列。我们确定了在入院过程中早期出现的与持续 AG(定义为入院期间毛细血管血糖<4 或>15 mmol/L 持续≥2 天)相关的临床因素。使用逻辑回归构建了持续 AG 的预测模型,并使用拆分样本方法进行内部验证。

结果

153 例(26%)住院患者发生持续 AG,与入院时的糖代谢异常(比值比 [OR],3.65)、糖化血红蛋白≥8.1%(OR,5.08)、含有磺脲类药物(OR,3.50)或胰岛素(OR,4.22)的降糖治疗方案、糖皮质激素药物治疗(OR,2.27)、Charlson 合并症指数评分和观察天数有关。一种基于入院时可靠获得的临床因素(入院时的糖代谢异常、糖化血红蛋白、降糖方案和糖皮质激素治疗)的早期识别预测工具,可以准确预测持续 AG(受试者工作特征曲线下面积为 0.806),在最佳截断值时,敏感性、特异性和阳性预测值分别为 84%、66%和 53%。

结论

基于入院时临床危险因素的临床预测工具可识别出持续 AG 风险较高的患者,并可协助住院糖尿病团队进行早期有针对性的管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验