Suppr超能文献

稀疏HP滤波:发现新冠病毒接触率中的拐点

Sparse HP filter: Finding kinks in the COVID-19 contact rate.

作者信息

Lee Sokbae, Liao Yuan, Seo Myung Hwan, Shin Youngki

机构信息

Department of Economics, Columbia University, 420 West 118th Street, New York, NY 10027, USA.

Centre for Microdata Methods and Practice, Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK.

出版信息

J Econom. 2021 Jan;220(1):158-180. doi: 10.1016/j.jeconom.2020.08.008. Epub 2020 Sep 26.

Abstract

In this paper, we estimate the time-varying COVID-19 contact rate of a Susceptible-Infected-Recovered (SIR) model. Our measurement of the contact rate is constructed using data on actively infected, recovered and deceased cases. We propose a new trend filtering method that is a variant of the Hodrick-Prescott (HP) filter, constrained by the number of possible kinks. We term it the and apply it to daily data from five countries: Canada, China, South Korea, the UK and the US. Our new method yields the kinks that are well aligned with actual events in each country. We find that the sparse HP filter provides a fewer kinks than the trend filter, while both methods fitting data equally well. Theoretically, we establish risk consistency of both the sparse HP and trend filters. Ultimately, we propose to use time-varying to document and monitor outbreaks of COVID-19.

摘要

在本文中,我们估计了易感-感染-康复(SIR)模型中随时间变化的新冠病毒接触率。我们对接触率的测量是利用活跃感染、康复和死亡病例的数据构建的。我们提出了一种新的趋势滤波方法,它是霍德里克-普雷斯科特(HP)滤波器的一种变体,受可能的拐点数量约束。我们将其称为 并将其应用于加拿大、中国、韩国、英国和美国五个国家的每日数据。我们的新方法产生的拐点与每个国家的实际事件高度吻合。我们发现,稀疏HP滤波器提供的拐点比 趋势滤波器少,而两种方法对数据的拟合效果同样良好。从理论上讲,我们建立了稀疏HP滤波器和 趋势滤波器的风险一致性。最终,我们建议使用随时间变化的 来记录和监测新冠疫情的爆发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73af/7519716/f657685fb36b/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验