Suppr超能文献

基于实地观测、卫星反演和模型模拟研究2020年初新冠疫情封锁、春节及气象因素对中国一氧化氮变化的影响

Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.

作者信息

Wang Zhe, Uno Itsushi, Yumimoto Keiya, Itahashi Syuichi, Chen Xueshun, Yang Wenyi, Wang Zifa

机构信息

Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.

出版信息

Atmos Environ (1994). 2021 Jan 1;244:117972. doi: 10.1016/j.atmosenv.2020.117972. Epub 2020 Sep 28.

Abstract

The lockdown measures due to COVID-19 affected the industry, transportation and other human activities within China in early 2020, and subsequently the emissions of air pollutants. The decrease of atmospheric NO due to the COVID-19 lockdown and other factors were quantitively analyzed based on the surface concentrations by in-situ observations, the tropospheric vertical column densities (VCDs) by different satellite retrievals including OMI and TROPOMI, and the model simulations by GEOS-Chem. The results indicated that due to the COVID-19 lockdown, the surface NO concentrations decreased by 42% ± 8% and 26% ± 9% over China in February and March 2020, respectively. The tropospheric NO VCDs based on both OMI and high quality (quality assurance value (QA) ≥ 0.75) TROPOMI showed similar results as the surface NO concentrations. The daily variations of atmospheric NO during the first quarter (Q1) of 2020 were not only affected by the COVID-19 lockdown, but also by the Spring Festival (SF) holiday (January 24-30, 2020) as well as the meteorology changes due to seasonal transition. The SF holiday effect resulted in a NO reduction from 8 days before SF to 21 days after it (i.e. January 17 - February 15), with a maximum of 37%. From the 6 days after SF (January 31) to the end of March, the COVID-19 lockdown played an important role in the NO reduction, with a maximum of 51%. The meteorology changes due to seasonal transition resulted in a nearly linear decreasing trend of 25% and 40% reduction over the 90 days for the NO concentrations and VCDs, respectively. Comparisons between different datasets indicated that medium quality (QA ≥ 0.5) TROPOMI retrievals might suffer large biases in some periods, and thus attention must be paid when they are used for analyses, data assimilations and emission inversions.

摘要

2020年初,因新冠疫情实施的封锁措施影响了中国的工业、交通及其他人类活动,进而影响了空气污染物排放。基于现场观测的地表浓度、不同卫星反演(包括OMI和TROPOMI)得到的对流层垂直柱浓度(VCD)以及GEOS-Chem模型模拟,对因新冠疫情封锁及其他因素导致的大气NO减少情况进行了定量分析。结果表明,由于新冠疫情封锁,2020年2月和3月中国地表NO浓度分别下降了42%±8%和26%±9%。基于OMI和高质量(质量保证值(QA)≥0.75)TROPOMI的对流层NO VCD显示出与地表NO浓度相似的结果。2020年第一季度(Q1)大气NO的日变化不仅受到新冠疫情封锁的影响,还受到春节假期(2020年1月24日至30日)以及季节转换导致的气象变化的影响。春节假期效应导致NO在春节前8天到春节后21天(即1月17日至2月15日)减少,最大降幅为37%。从春节后6天(1月31日)到3月底,新冠疫情封锁在NO减少中起了重要作用,最大降幅为51%。季节转换导致的气象变化使NO浓度和VCD在90天内分别呈现近线性下降趋势,降幅分别为25%和40%。不同数据集之间的比较表明,中等质量(QA≥0.5)的TROPOMI反演结果在某些时期可能存在较大偏差,因此在用于分析、数据同化和排放反演时必须予以注意。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c6/7521432/575bfe714cfe/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验