Suppr超能文献

利用新型高维生物信息算法发现新型 II 型细菌素。

Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm.

机构信息

Division of Infectious Diseases, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, United States.

Division of Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, United States.

出版信息

Front Immunol. 2020 Sep 3;11:1873. doi: 10.3389/fimmu.2020.01873. eCollection 2020.

Abstract

Antimicrobial compounds first arose in prokaryotes by necessity for competitive self-defense. In this light, prokaryotes invented the first host defense peptides. Among the most well-characterized of these peptides are class II bacteriocins, ribosomally-synthesized polypeptides produced chiefly by Gram-positive bacteria. In the current study, a tensor search protocol-the BACIIα algorithm-was created to identify and classify bacteriocin sequences with high fidelity. The BACIIα algorithm integrates a consensus signature sequence, physicochemical and genomic pattern elements within a high-dimensional query tool to select for bacteriocin-like peptides. It accurately retrieved and distinguished virtually all families of known class II bacteriocins, with an 86% specificity. Further, the algorithm retrieved a large set of unforeseen, putative bacteriocin peptide sequences. A recently-developed machine-learning classifier predicted the vast majority of retrieved sequences to induce negative Gaussian curvature in target membranes, a hallmark of antimicrobial activity. Prototypic bacteriocin candidate sequences were synthesized and demonstrated potent antimicrobial efficacy against a broad spectrum of human pathogens. Therefore, the BACIIα algorithm expands the scope of prokaryotic host defense bacteriocins and enables an innovative bioinformatics discovery strategy. Understanding how prokaryotes have protected themselves against microbial threats over eons of time holds promise to discover novel anti-infective strategies to meet the challenge of modern antibiotic resistance.

摘要

抗菌化合物最初是为了在原核生物中进行必要的竞争自卫而产生的。从这个角度来看,原核生物发明了第一批宿主防御肽。在这些肽中,最著名的是类 II 细菌素,这是一种由革兰氏阳性细菌主要产生的核糖体合成的多肽。在本研究中,创建了一种张量搜索协议——BACIIα 算法,以高度准确地识别和分类细菌素序列。BACIIα 算法整合了一个共识签名序列、物理化学和基因组模式元素,形成一个高维查询工具,用于选择细菌素样肽。它能够准确地检索和区分几乎所有已知的 II 类细菌素家族,特异性为 86%。此外,该算法还检索到了一组意想不到的、可能的细菌素肽序列。最近开发的机器学习分类器预测,检索到的绝大多数序列都会在靶膜上诱导负高斯曲率,这是抗菌活性的一个标志。原型细菌素候选序列被合成,并证明对广谱人类病原体具有强大的抗菌功效。因此,BACIIα 算法扩展了原核生物宿主防御细菌素的范围,并为创新的生物信息学发现策略提供了可能。了解原核生物在数亿年的时间里是如何保护自己免受微生物威胁的,有望发现新的抗感染策略,以应对现代抗生素耐药性的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05db/7494827/ea12081953f1/fimmu-11-01873-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验