Suppr超能文献

铂思硅基玻璃组织模拟体模的光学特性。

Optical properties of PlatSil SiliGlass tissue-mimicking phantoms.

作者信息

Naglič Peter, Zelinskyi Yevhen, Rogelj Luka, Stergar Jošt, Milanič Matija, Novak Jure, Kumperščak Borut, Bürmen Miran

机构信息

University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.

University of Ljubljana, Faculty of Mathematics and Physics, Jadranska ulica 19, 1000 Ljubljana, Slovenia.

出版信息

Biomed Opt Express. 2020 Jun 16;11(7):3753-3768. doi: 10.1364/BOE.391720. eCollection 2020 Jul 1.

Abstract

In this work, we revise the preparation procedure and conduct an in depth characterization of optical properties for the recently proposed silicone-based tissue-mimicking optical phantoms in the spectral range from 475 to 925 nm. The optical properties are characterized in terms of refractive index and its temperature dependence, absorption and reduced scattering coefficients and scattering phase function related quantifiers. The scattering phase function and related quantifiers of the optical phantoms are first assessed within the framework of the Mie theory by using the measured refractive index of SiliGlass and size distribution of the hollow silica spherical particles that serve as scatterers. A set of purely absorbing optical phantoms in cuvettes is used to evaluate the linearity of the absorption coefficient with respect to the concentration of black pigment that serves as the absorber. Finally, the optical properties in terms of the absorption and reduced scattering coefficients and the subdiffusive scattering phase function quantifier are estimated for a subset of phantoms from spatially resolved reflectance using deep learning aided inverse models. To this end, an optical fiber probe with six linearly arranged optical fibers is used to collect the backscattered light at small and large distances from the source fiber. The underlying light propagation modeling is based on the stochastic Monte Carlo method that accounts for all the details of the optical fiber probe.

摘要

在这项工作中,我们修订了制备程序,并对最近提出的基于硅酮的组织模拟光学体模在475至925纳米光谱范围内的光学特性进行了深入表征。光学特性通过折射率及其温度依赖性、吸收系数、约化散射系数以及与散射相函数相关的量化指标来表征。首先,在米氏理论框架内,利用SiliGlass的测量折射率和用作散射体的空心二氧化硅球形颗粒的尺寸分布,评估光学体模的散射相函数及相关量化指标。使用一组比色皿中的纯吸收性光学体模来评估吸收系数相对于用作吸收剂的黑色颜料浓度的线性度。最后,利用深度学习辅助反演模型,从空间分辨反射率估计一组体模的吸收系数、约化散射系数以及亚扩散散射相函数量化指标等光学特性。为此,使用具有六根线性排列光纤的光纤探头,在距源光纤的小距离和大距离处收集背向散射光。潜在的光传播建模基于考虑了光纤探头所有细节的随机蒙特卡罗方法。

相似文献

1
Optical properties of PlatSil SiliGlass tissue-mimicking phantoms.
Biomed Opt Express. 2020 Jun 16;11(7):3753-3768. doi: 10.1364/BOE.391720. eCollection 2020 Jul 1.
2
Effects of phantom microstructure on their optical properties.
J Biomed Opt. 2024 Sep;29(9):093502. doi: 10.1117/1.JBO.29.9.093502. Epub 2024 May 6.
6
Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms.
Biomed Opt Express. 2019 Mar 28;10(4):2090-2100. doi: 10.1364/BOE.10.002090. eCollection 2019 Apr 1.
7
In vivo local determination of tissue optical properties: applications to human brain.
Appl Opt. 1999 Aug 1;38(22):4939-50. doi: 10.1364/ao.38.004939.
10
Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
Phys Med Biol. 1996 Sep;41(9):1823-44. doi: 10.1088/0031-9155/41/9/017.

引用本文的文献

1
Development and characterization of silicone-based tissue phantoms for pulse oximeter performance testing.
J Biomed Opt. 2024 Jun;29(Suppl 3):S33314. doi: 10.1117/1.JBO.29.S3.S33314. Epub 2025 Jan 7.
2
Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
Biomed Opt Express. 2024 Oct 28;15(11):6561-6572. doi: 10.1364/BOE.533481. eCollection 2024 Nov 1.
3
Effects of phantom microstructure on their optical properties.
J Biomed Opt. 2024 Sep;29(9):093502. doi: 10.1117/1.JBO.29.9.093502. Epub 2024 May 6.
4
Effect of curvature correction on parameters extracted from hyperspectral images.
J Biomed Opt. 2021 Sep;26(9). doi: 10.1117/1.JBO.26.9.096003.
5
Erratum: Optical properties of PlatSil SiliGlass tissue-mimicking phantoms: erratum.
Biomed Opt Express. 2020 Jul 10;11(8):4275. doi: 10.1364/BOE.401725. eCollection 2020 Aug 1.

本文引用的文献

2
Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms.
Biomed Opt Express. 2019 Mar 28;10(4):2090-2100. doi: 10.1364/BOE.10.002090. eCollection 2019 Apr 1.
3
Stability of gel wax based optical scattering phantoms.
Biomed Opt Express. 2018 Jul 2;9(8):3495-3502. doi: 10.1364/BOE.9.003495. eCollection 2018 Aug 1.
5
Development of thin skin mimicking bilayer solid tissue phantoms for optical spectroscopic studies.
Biomed Opt Express. 2017 Jun 7;8(7):3198-3212. doi: 10.1364/BOE.8.003198. eCollection 2017 Jul 1.
6
Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media.
Biomed Opt Express. 2017 Feb 28;8(3):1895-1910. doi: 10.1364/BOE.8.001895. eCollection 2017 Mar 1.
7
Geometrically complex 3D-printed phantoms for diffuse optical imaging.
Biomed Opt Express. 2017 Feb 23;8(3):1754-1762. doi: 10.1364/BOE.8.001754. eCollection 2017 Mar 1.
10
Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging.
Optica. 2016 Jun 20;3(6):613-621. doi: 10.1364/OPTICA.3.000613. Epub 2016 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验