Suppr超能文献

动态、低荧光生物样本的快速全内反射结构光照明显微镜成像

Fast TIRF-SIM imaging of dynamic, low-fluorescent biological samples.

作者信息

Roth Julian, Mehl Johanna, Rohrbach Alexander

机构信息

Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany.

Laboratory of Applied Mechanobiology, Department of Health Science and Technology, ETH Zürich, Switzerland.

出版信息

Biomed Opt Express. 2020 Jun 26;11(7):4008-4026. doi: 10.1364/BOE.391561. eCollection 2020 Jul 1.

Abstract

Fluorescence microscopy is the standard imaging technique to investigate the structures and dynamics of living cells. However, increasing the spatial resolution comes at the cost of temporal resolution and vice versa. In addition, the number of images that can be taken in sufficiently high quality is limited by fluorescence bleaching. Hence, super-resolved imaging at several Hertz of low fluorescent biological samples is still a big challenge and, especially in structured illumination microscopy (SIM), is often visible as imaging artifacts. In this paper, we present a TIRF-SIM system based on scan-mirrors and a Michelson interferometer, which generates images at 110 nm spatial resolution and up to 8 Hz temporal resolution. High resolution becomes possible by optimizing the illumination interference contrast, even for low fluorescent, moving samples. We provide a framework and guidelines on how the modulation contrast, which depends on laser coherence, polarization, beam displacement or sample movements, can be mapped over the entire field of view. In addition, we characterize the influence of the signal-to-noise ratio and the Wiener filtering on the quality of reconstructed SIM images, both in real and frequency space. Our results are supported by theoretical descriptions containing the parameters leading to image artifacts. This study aims to help microscopists to better understand and adjust optical parameters for structured illumination, thereby leading to more trustworthy measurements and analyses of biological dynamics.

摘要

荧光显微镜是研究活细胞结构和动态的标准成像技术。然而,提高空间分辨率是以牺牲时间分辨率为代价的,反之亦然。此外,能够以足够高的质量拍摄的图像数量受到荧光漂白的限制。因此,对低荧光生物样本进行几赫兹的超分辨成像仍然是一个巨大的挑战,尤其是在结构照明显微镜(SIM)中,通常会表现为成像伪影。在本文中,我们展示了一种基于扫描镜和迈克尔逊干涉仪的全内反射荧光结构照明显微镜(TIRF-SIM)系统,该系统能以110纳米的空间分辨率和高达8赫兹的时间分辨率生成图像。通过优化照明干涉对比度,即使对于低荧光、移动的样本也能实现高分辨率成像。我们提供了一个框架和指导方针,说明如何在整个视场范围内映射依赖于激光相干性、偏振、光束位移或样本移动的调制对比度。此外,我们在实空间和频率空间中都表征了信噪比和维纳滤波对重建的SIM图像质量的影响。我们的结果得到了包含导致图像伪影参数的理论描述的支持。本研究旨在帮助显微镜学家更好地理解和调整结构照明的光学参数,从而实现对生物动态更可靠的测量和分析。

相似文献

3
Lissajous scanning structured illumination microscopy.李萨如扫描结构照明显微镜术
Biomed Opt Express. 2020 Sep 15;11(10):5575-5585. doi: 10.1364/BOE.404220. eCollection 2020 Oct 1.

引用本文的文献

6
Through the Eyes of Creators: Observing Artificial Molecular Motors.透过创作者的视角:观察人工分子马达
ACS Nanosci Au. 2022 Jun 15;2(3):140-159. doi: 10.1021/acsnanoscienceau.1c00041. Epub 2022 Jan 13.
8
Motionless Polarizing Structured Illumination Microscopy.静相偏光结构光照明显微镜
Sensors (Basel). 2021 Apr 17;21(8):2837. doi: 10.3390/s21082837.

本文引用的文献

10
Deconvolution methods for structured illumination microscopy.用于结构光照明显微镜的去卷积方法。
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):B12-20. doi: 10.1364/JOSAA.33.000B12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验