Suppr超能文献

二维纳米材料包覆的 Janus 微马达作为(生物)传感的动态界面。

Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing.

机构信息

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, E-28871 Madrid, Spain.

Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.

出版信息

ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46588-46597. doi: 10.1021/acsami.0c15389. Epub 2020 Oct 5.

Abstract

In this work, we study the interaction of graphdiyne oxide (GDYO)-, graphene oxide (GO)-, or black phosphorous (BP)-wrapped Janus micromotors using a model system relying on a fluorescence-labeled affinity peptide, which is released upon specific interaction with a target Cholera Toxin B. Such ON-OFF-ON system allows mimicking similar processes occurring at (bio)-interfaces and to study the related sorption and desorption kinetics. The distinct surface properties of each nanomaterial play a critical role in the loading/release capacity of the peptide, greatly influencing the release profiles. Sorption obeys a second-order kinetic model using the two-dimensional (2D) nanomaterials in connection with micromotors, indicating a strong influence of chemisorption process for BP micromotors. Yet, release kinetics are faster for GDYO and GO nanomaterials, indicating a contribution of π and hydrophobic interactions in the probe sorption (Cholera Toxin B affinity peptide) and target probe release (in the presence of Cholera Toxin B). Micromotor movement also plays a critical role in such processes, allowing for efficient operation in low raw sample volumes, where the high protein content can diminish probe loading/release, affecting the overall performance. The loading/release capacity and feasibility of the (bio)-sensing protocol are illustrated in and bacteria cultures as realistic domains. The new concept described here holds considerable promise to understand the interaction of micromotor with biological counterparts in a myriad of biomedical and other practical applications, including the design of novel micromotor-based sensors.

摘要

在这项工作中,我们研究了基于荧光标记亲和肽的模型体系中,氧化石墨炔(GDYO)、氧化石墨烯(GO)或黑磷(BP)包裹的 Janus 微马达的相互作用,该亲和肽在与靶标霍乱毒素 B 发生特定相互作用时会被释放。这种开-关-开系统可以模拟(生物)界面上发生的类似过程,并研究相关的吸附和解吸动力学。每种纳米材料的独特表面性质在肽的加载/释放能力中起着关键作用,极大地影响了释放曲线。吸附遵循二级动力学模型,使用二维(2D)纳米材料与微马达相结合,表明 BP 微马达的化学吸附过程有很强的影响。然而,GDYO 和 GO 纳米材料的释放动力学更快,表明探针吸附(霍乱毒素 B 亲和肽)和目标探针释放(在存在霍乱毒素 B 的情况下)中π和疏水相互作用的贡献。微马达的运动在这些过程中也起着关键作用,允许在低原始样品体积下高效运行,其中高蛋白质含量会降低探针的加载/释放,从而影响整体性能。(生物)传感方案的加载/释放能力和可行性在和 细菌培养物等实际领域中得到了说明。这里描述的新概念有望在众多生物医学和其他实际应用中理解微马达与生物对应物的相互作用,包括设计新型基于微马达的传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验