Suppr超能文献

基于 Twitter 的大麻浓缩物使用情况调查。

A Twitter-based survey on marijuana concentrate use.

机构信息

Center for Interventions, Treatment, and Addictions Research (CITAR), Department of Population and Public Health Sciences, Wright State University Boonshoft School of Medicine, USA; Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis), Department of Computer Science and Engineering, Wright State University, USA.

Center for Interventions, Treatment, and Addictions Research (CITAR), Department of Population and Public Health Sciences, Wright State University Boonshoft School of Medicine, USA.

出版信息

Drug Alcohol Depend. 2018 Jun 1;187:155-159. doi: 10.1016/j.drugalcdep.2018.02.033. Epub 2018 Apr 11.

Abstract

AIMS

The purpose of this paper is to analyze characteristics of marijuana concentrate users, describe patterns and reasons of use, and identify factors associated with daily use of concentrates among U.S.-based cannabis users recruited via a Twitter-based online survey.

METHODS

An anonymous Web-based survey was conducted in June 2017 with 687 U.S.-based cannabis users recruited via Twitter-based ads. The survey included questions about state of residence, socio-demographic characteristics, and cannabis use including marijuana concentrates. Multiple logistic regression analyses were conducted to identify characteristics associated with lifetime and daily use of marijuana concentrates.

RESULTS

Almost 60% of respondents were male, 86% were white, and the mean age was 43.0 years. About 48% reported marijuana concentrate use. After adjusting for multiple testing, significant predictors of concentrate use included: living in "recreational" (AOR = 2.04; adj. p = .042) or "medical, less restrictive" (AOR = 1.74; adj. p = .030) states, being younger (AOR = 0.97, adj. p = .008), and daily herbal cannabis use (AOR = 2.57, adj. p = .008). Out of 329 marijuana concentrate users, about 13% (n = 44) reported daily/near daily use. Significant predictors of daily concentrate use included: living in recreational states (AOR = 3.59, adj. p = .020) and using concentrates for therapeutic purposes (AOR = 4.34, adj. p = .020).

CONCLUSIONS

Living in states with more liberal marijuana policies is associated with greater likelihood of marijuana concentrate use and with more frequent use. Characteristics of daily users, in particular, patterns of therapeutic use warrant further research with community-recruited samples.

摘要

目的

本文旨在分析大麻浓缩物使用者的特征,描述使用模式和原因,并确定通过基于 Twitter 的在线调查招募的美国大麻使用者中与浓缩物每日使用相关的因素。

方法

2017 年 6 月,通过基于 Twitter 的广告在美国招募了 687 名大麻使用者,进行了一项匿名在线调查。调查包括居住州、社会人口特征以及包括大麻浓缩物在内的大麻使用情况。采用多变量逻辑回归分析确定与终生和每日使用大麻浓缩物相关的特征。

结果

近 60%的受访者为男性,86%为白人,平均年龄为 43.0 岁。约 48%的受访者报告使用大麻浓缩物。调整多重检验后,浓缩物使用的显著预测因素包括:居住在“娱乐”(AOR=2.04;调整后 p=0.042)或“医疗,限制较少”(AOR=1.74;调整后 p=0.030)州,年龄较小(AOR=0.97,调整后 p=0.008),以及每日使用草药大麻(AOR=2.57,调整后 p=0.008)。在 329 名大麻浓缩物使用者中,约 13%(n=44)报告每日/几乎每日使用。每日浓缩物使用的显著预测因素包括:居住在娱乐州(AOR=3.59,调整后 p=0.020)和出于治疗目的使用浓缩物(AOR=4.34,调整后 p=0.020)。

结论

大麻政策较宽松的州的居民更有可能使用大麻浓缩物,且使用频率更高。特别是每日使用者的特征,包括治疗用途的使用模式,值得进一步研究,以获取社区招募样本。

相似文献

1
A Twitter-based survey on marijuana concentrate use.基于 Twitter 的大麻浓缩物使用情况调查。
Drug Alcohol Depend. 2018 Jun 1;187:155-159. doi: 10.1016/j.drugalcdep.2018.02.033. Epub 2018 Apr 11.
2
Characterizing marijuana concentrate users: A web-based survey.大麻浓缩物使用者特征分析:一项基于网络的调查。
Drug Alcohol Depend. 2017 Sep 1;178:399-407. doi: 10.1016/j.drugalcdep.2017.05.034. Epub 2017 Jun 29.

引用本文的文献

10
Therapeutic Claims in Cannabidiol (CBD) Marketing Messages on Twitter.推特上大麻二酚(CBD)营销信息中的治疗功效宣称。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:3083-3088. doi: 10.1109/bibm52615.2021.9669404. Epub 2022 Jan 14.

本文引用的文献

3
Associations between butane hash oil use and cannabis-related problems.丁烷大麻脂使用与大麻相关问题之间的关联。
Drug Alcohol Depend. 2017 Oct 1;179:25-31. doi: 10.1016/j.drugalcdep.2017.06.015. Epub 2017 Jul 14.
4
Characterizing marijuana concentrate users: A web-based survey.大麻浓缩物使用者特征分析:一项基于网络的调查。
Drug Alcohol Depend. 2017 Sep 1;178:399-407. doi: 10.1016/j.drugalcdep.2017.05.034. Epub 2017 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验